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CLINICAL HIGHLIGHTS
• The “objective” of the circulatory system evolution is to

accompany the global development of the increasingly com-
plex animal’s vital capacities, leading to humankind.

• The motor driving evolution of the circulation is to reach the
most exact coupling between metabolic support (vascular-
ization) and functional localization and activities of organs.

• Evolutive acquisition of arterial blood pressure is therefore
a consequence of this teleonomy, but not its driving force.

• There are numerous physiological consequence of this evo-
lution including mechanotransduction, mechanical energy
transfer and dissipation, outward convection of plasma
components, inward cellular conductance, blood cell colli-
sion, environment-driven smooth muscle cell phenotypes,
exaptation and footprints on ontogeny�

• This evolutive adaptation is also the most common denom-
inator of arterial disease, a predominant cause of death
and disability.
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Michel J-B. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and
Arterial Smooth Muscle Cells. Physiol Rev 100: 1779–1837, 2020. First published January 30,
2020; doi:10.1152/physrev.00022.2019.—The evolution of the circulatory system from inver-
tebrates to mammals has involved the passage from an open system to a closed in-parallel system
via a closed in-series system, accompanying the increasing complexity and efficiency of life’s
biological functions. The archaic heart enables pulsatile motion waves of hemolymph in inverte-
brates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth
muscle cells appear later. The present review focuses on evolution of the circulatory system. In
particular, we address how and why this evolution took place from a closed, flowing, longitudinal
conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment.
However, although arterial pressure was the latest acquired hemodynamic variable, the general
teleonomy of the evolution of species is the differentiation of individual organ function, supported by
specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the estab-
lishment of an active contractile tone in resistance arteries, which permitted the regulation of blood
supply to specific organ activities via its localized function-dependent inhibition (active vasodilation).
The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by
the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood
pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial
interstitium generates the unidirectional outward radial advective conductance of plasma solutes
across the wall of conductance arteries. This hemodynamic evolution was accompanied by impor-
tant changes in arterial wall structure, supported by smooth muscle cell functional plasticity,
including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These
adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction.
These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve dis-
ease, heart failure, aneurysms, hypertension, and physiological aging.
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mechanotransduction; ontogenesis; potential energy
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I. INTRODUCTION

In the beginning was the heart, and the heart generated
pulsatile flow (kinetic energy), which became systolic/dia-
stolic pressures (potential energy) and took residency
among mammals.

• The “objective” of the circulatory system evolution is to accom-
pany the global development of the increasingly complex ani-
mal’s vital capacities, leading to humankind.

• The motor driving evolution of the circulation is to reach the
most exact coupling between metabolic support (vasculariza-
tion) and functional localization and activities of organs.

• Evolutive acquisition of arterial blood pressure is therefore a
consequence of this teleonomy, but not its driving force.

• There are numerous physiological consequence of this evolu-
tion including mechanotransduction, mechanical energy
transfer and dissipation, outward convection of plasma com-
ponents, inward cellular conductance, blood cell collision, en-
vironment-driven smooth muscle cell phenotypes, exaptation
and footprints on ontogeny�

• This evolutive adaptation is also the most common denomina-
tor of arterial disease, a predominant cause of death and
disability.
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Following the anatomical descriptions by Michel Servet
(1511–1553) and Andreas Vesalius (1511–1553), William
Harvey (1578–1657) described experimentally for the first
time the physiology of the blood circulation in mammals.
He applied venous and arterial ligatures in 1619 (work
published 1628 in “Exercitatio Anatomica de Motu Cordis
et Sanguinis in Animalibus,” Anatomical exercises on the
motion of the heart and blood in animals) and observed a
highly pressurized arterial flow (ligature hard to tighten on
conductance arteries) and a low-pressure venous flow (lig-
ature easy to tighten on conductance veins), animated by
the pulsatile heart beats (270). His observations also in-
cluded that “the forward flow of blood impeded (by the
tight) and its impact is reflected backward” (Exercitationes
Duae Anatomicae De Circulatione Saguinis Ad Joannem
Riolanumn filium. Rotterdam, 1649). Marcello Malpighi
(1628–1694) completed this macroscopic description by
making a microscopic observation of capillaries in the frog
and then in mammals (572). Malpighi also suggested that
nature achieved its great works in large animals after un-
dertaking a series of attempts in lower animals. Since the
17th century, our anatomical and functional knowledge of
the circulation has continuously increased, progressing to a
more complete description of the evolution of the heart,
vessels, and blood at the tissue, cell, and molecular levels
from invertebrates to mammals, and in particular in hu-
mans.

In parallel, based on the observations of living systems
throughout the world, the first theories of the evolution of
species were put forward, particularly by Jean-Baptiste La-
marck (Philosophie zoologique, 1809), who proposed the
inheritable transmission of phenotypic adaptations, driven
by environmental constraints. This was followed in 1859 by
Charles Darwin’s principle of natural selection under envi-
ronmental pressure (62, 184). These two observational
analyses have led to continuing challenges in modern biol-
ogy, with the Lamarck view being somehow resurrected by
the discovery of the epigenetic modulation of gene expres-
sion (255) (neo-Lamarckism), in which the environmental
constraints, including biophysical factors, drive the sto-
chasticity of the evolution of the genome, and Darwin’s
view being rather restricted by the discovery of random
genetic mutation (201, 570) (neo-Darwinism) (124, 289a,
369). Genetic enthusiasm, however, has been mitigated by
the recent progress of genetic approaches in the numeric
era. Heritability of epigenetic footprints has been analyzed
in inter- and transgenerational inheritance (218). These
evolutive paradigms were progressively developed from 60
yr ago, when Conrad H. Waddington (559) introduced in
1952 the notion of accelerated genetic assimilation (illus-
trated by the crossveinless gene in Drosophila), to today,
through the concept of epigenetic memory or (re)program-
ming (558). Nevertheless, the evolution of the circulation
from fishes to mammals is a particularly rich integrative
synthesis of these theories, involving mainly the acquisition

of progressively increasing peripheral frictional forces (re-
sistance to flow) due to the arterial smooth muscle cell
(SMC) contractile tone, leading to highly pulsatile arterial
blood pressure and its effects on the structure and function
of the heart and wall tissue and its main stromal SMC
component in conductance and muscular arteries.

The aim of this physiological review is not to provide an
exhaustive description of the evolutionary molecular phys-
iology of the circulation but to propose a holistic synthesis
of how the teleonomy of evolution has determined the func-
tional and structural biology (183) of the human circulation
and how it impacts human pathologies in arteries and left
ventricle (LV). The human circulation evolved from exap-
tation, natural selection, and epigenetic adaptation (430)
via bidirectional crosstalk between hemodynamic forces
and functional and structural plasticity of arterial struc-
tures. We will focus on the arterial SMC, which is the effec-
tor of peripheral resistance that determines arterial pres-
sure, locally regulating blood flow, and is also the main
mural cell to react to this pressure loading in mammals.
More specifically, we will discuss how this adaptation im-
pacts the specific human susceptibility to cardiovascular
diseases (CVD), mainly concerning conductance arteries
and the LV diseases in the context of time, from fetal life to
aging.

II. PHYLOGENESIS OF THE CIRCULATION
(FIGURE 1)

A. From Invertebrates to Vertebrates

The initial circulation in invertebrates is characterized by
the appearance of an archaic beating pump as a myoepithe-
lial tube capable of peristalsis initiated by motoneurons
from neural ganglia (annelids). In mollusks, the heart has
only two chambers, an atrium and a ventricle, separated by
an archaic valve preventing backflow during ventricular
contraction (502). In crustaceans, the circulation of hemo-
lymph (a viscous liquid) is driven by a single contractile
chamber (ventricle) ejecting to the gills through the sinus
and regulated by motoneurons and interneurons. Due to the
phasic nature of the heart’s pumping ability, diastolic filling
versus systolic ejection, the generated flow is pulsatile. This
capacity to move interstitial hemolymph in an open vascu-
lar system increases the probability of interactions between
energetic substrates, particularly phosphoryl transfers
(307), and functioning tissues, enhancing their diversifica-
tion. In crustaceans, the vessels are tubes limited by the
basement membrane of neighboring tissue and a collagen
basal lamina (486). These tubes are devoid of an endothelial
lining, and the neurovegetative system mainly develops as
parasympathetic cholinergic enteric nerves.

In invertebrates, hemolymph and hemocytes are respec-
tively the soluble and cellular components of the moving
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extracellular fluid. Hemolymph and nucleated hemocytes
(173) are directly involved in 1) the coagulation system (93,
261), which is able to stop extracellular fluid loss; 2) innate
immunity (70), which is able to limit pathogen diffusion via
encapsulation, nodulation, phagocytosis (2), and the re-
lease of bactericidal factors (70) and create immune mem-
ory via epigenetic footprints (188); and 3) oxygen transport
via intracellular (hemocyte) and extracellular (hemolymph)
heme-related proteins (212, 531).

Therefore, various differentiated hemocytes and hemo-
lymph proteins participate in the overlapping functions of
coagulation, phagocytosis (261), innate immunity (259,
588), oxygen transport (106), and oxidation (566) in inver-
tebrates. These poorly differentiated polyvalent cellular and
molecular functions of blood in invertebrates have a direct
impact on mammalian physiology and, by extrapolation,
some human pathologies. For instance, among these func-
tions, the ability of horseshoe crab hemocytes (amebocytes,
water extract) to clot (coagulogen) in the presence of bac-
terial lipopolysaccharides (LPS) (innate immunity plus clot-
ting) is used as a highly sensitive test, the Limulus-test (LAL-
test), to detect bacterial endotoxins in numerous media (de-
vices, therapeutic solutes) and biological fluids (253, 254).

In contrast, with the open circulation of invertebrates, an
“in-series” closed circulation develops in lower vertebrates.
In fishes (actinopterygians, teleosts), an abdominal heart,
implanted on the deoxygenated (venous) side of the circu-
lation, begins to become segmented with a sinus venosus, a
filling chamber (atrium), an ejection chamber (a single ven-
tricle), a bulbus arteriosus, and a conus arteriosus (outflow
tract). The fraction of blood (a viscous liquid composed of

plasma and circulating cells) ejected by the ventricle flows to
the gills, where it is oxygenated by gas diffusion from water
to blood through a capillary system. The oxygenated blood
flows in the dorsal aorta towards functionally active tissues,
which are oxygenated via a peripheral capillary system.
Fishes are cold-blooded animals (poikilotherms) (498), pos-
sibly involving overwintering and dormancy. Their basic
circulatory anatomy, an anteroventral heart and a dorsal
aorta distributing to the main organs, is conserved through-
out the evolution of species, including mammals. Vessel
wall elastin exists in teleosts specifically in the ventral conus
arteriosus, in which some resistances (mural cells tonic cy-
toskeleton) and elastin dampen the ventricular outflow, dis-
sipating the cyclic kinetic energy (Ek) upstream to the gill
capillaries (64, 243). In contrast, it appears that there is no
elastin in fish aorta (114). Therefore, frictional viscous
forces (resistance to flow) are lower in the dorsal circulation
(oxygenated blood) as compared with the ventral part, and
blood pressure is slightly higher in ventral than in dorsal
vessels (see below: zebrafish). These observations underline
the role of frictional forces to drag kinetic energy to protect
the gill capillaries from the impact of the cardiac cyclic
outflow. The closed circulatory vessels consist of endothe-
lial tubes. Since the fish circulation is a closed system with
marginal dissipation, the law of conservation of mechanical
energy is approximatively applicable. The pumping activity
of the heart muscle is sufficient to maintain Ek throughout
the whole circulation in fish.

The autonomic nervous system develops in fish with both
cholinergic parasympathetic nerves, mainly enteric and car-
diac nerves (decreasing in heart rate), which predominate,
and adrenergic sympathetic nerves of the opposite effects,

Archaic heart

Heart

Open

Atria/ventricles in series

Septation in parallel

Upright
posture

Gills

Oxygenation

Gills

Lung

Lung

Intratissular
tubes

Vessels

Endothelium

Muscularization

Branching

Invertebrates

Evolution

Fish

Mammals

Human

Cerebral
development

Circulation

–1.109 years

Datation

–500.106 years
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FIGURE 1. Evolution of the circulation
accompanying the general evolution of
species. The circulatory system pro-
gresses during the evolution of species
from an open system, to a closed “in se-
ries” system in cold-blooded fish, and then
to a closed “in parallel” warm-blooded one
in mammals, including the highly pressur-
ized arteries allowing specific local vaso-
dilation, adapted to the metabolic de-
mand of organ function, and finally, to a
system permitting upright posture in
man. [Lobster circulation image is from
McMahon (337a), with permission from
Journal of Experimental Biology. The mam-
mal art is from John Farrelly (http://
captainwonder.com/illustration/circ-
system). Other clipart are from Docplayer
(https://docplayer.info/) and Great Neck
Public Schools (https://www.greatneck.
k12.ny.us/) and used per their terms of use.]
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which progressively extend. This autonomic nervous con-
trol is mainly focused on heart rate and inotropy and on the
gill circulation. Fishes can monitor external (water compo-
sition, external pressure, water temperature) and internal
(feeding and metabolic elevation) environmental conditions
via specific receptors, particularly those localized in the
gills, which initiate cardiovascular control by the central
nervous system. Nevertheless, teleosts are extremely di-
verse, and therefore the adaptation of the autonomic ner-
vous system is variable, ranging from loss of control to fully
developed control systems (reviewed in Ref. 470).

A specific coronary circulation appears during the evolution
of fish. In a majority of teleosts, the myocardium is com-
posed of spongy tissue (trabeculae) that is metabolically
supplied from luminal venous blood (in 60% of fish spe-
cies). However, some long traveling teleosts (Salmonidae,
for instance) develop a more compacted myocardium, ne-
cessitating direct vascularization from the dorsal aorta, al-
lowing oxygenated blood to supply the outer compact layer
of the ventricular myocardium, whereas the luminal venous
blood continues to metabolically support the inner spongy
layer (146). Due to the myocardial contraction and the low
perfusion pressure, retrograde flow can be observed in the
coronary artery during systole (159). The myocardial con-
traction compresses the intramyocardial vessels, flushing
blood into the coronary venous system but also into the
coronary arteries. The development of a specific coronary
circulation in long traveling fishes is an excellent example of
the evolutionary adaptations of the circulation to the met-
abolic demands of organs and of the specificity of coronary
hemodynamics (phasic diastolic flow). In this initial evolu-
tionary step in vertebrates, the circulatory energy is essen-
tially kinetic here.

In this evolutionary context, the zebrafish experimental
model provides new opportunities for exploring circulatory
function in fish, including the existence or absence of the
relationship between the circulation and gene expression
(521). The anatomy and function of circulation in zebrafish
is similar to that described for teleost fishes. The zebrafish
heart is characteristic of a fish heart with two atria, a unique
ventricle, and a bulbus arteriosus and a conus arteriosus
upstream of the ventral aorta, giving rise to the afferent
branchial arteries supplying the gill capillaries. Despite its
small size, the unique ventricle is composed of both a
spongy (trabeculae) endocardial layer and a more compact
epicardial layer, perfused by coronary arteries originating
from the efferent branchial arteries (oxygenated blood). As
in other teleosts, the blood pressure is low in zebrafish: 2.5
mmHg at peak systolic pressure in the unique ventricle. Due
to the resistance and Ek dissipation in the gill arterioles, the
blood pressure is always higher in the ventral aorta (2.15
mmHg at peak flow) than in the dorsal aorta (1.50 mmHg
at peak flow) (238). Interestingly, elastin expression is lim-
ited to the skeletal cartilage, the bulbus arteriosus, the ven-

tral aorta (344), and the swim bladder (427). There is no
elastin expression in the dorsal aorta.

As in other teleosts, the zebrafish vessels mainly consist of
endothelial tubes lined with an endothelial cell monolayer,
which is supported by a basement membrane mainly com-
posed of collagen and adhesive proteins (fibronectin). Ecto-
dermic cells from the neural crest invade the primitive ven-
tral heart tube. A first wave invades the wall of the heart
chambers, and cells give rise to myocytes (25–30 h post
fertilization), while cells of a second wave (3 days later)
migrate along the aortic arch and wrap themselves around
the endothelial tube of the ventral aorta, the conus and the
bulbus arteriosus, forming the mural cells of the heart out-
flow tract (92) differentiating into SMCs. Therefore, there is
no striated-to-smooth muscle phenotypic transition in the
outflow tract of zebrafish (192) unlike in gastrovascular
cavities and peristaltic hearts described in many inverte-
brates. Initial vasculogenesis of the dorsal aorta consists of
angioblast migration from the ventral mesoderm and aggre-
gate budding on the midline, rapidly evolving into flattened
dorsal aortic tubes preceding venous tube formation. The
formation of the dorsal aortic tubes is vascular endothelial
growth factor (VEGF) dependent (136). Vasculogenesis is
completed by sprouting angiogenesis (473). In this angio-
genic context, VEGFs, bone morphogenic proteins (BMPs),
semaphorins secreted by avascular tissues, chemokines, and
interendothelial cell communications (cadherin, Notch)
play a predominant role in the guidance of budding, sprout-
ing, and hollowing out of new endothelial tubes. Finally,
blood flow and shear stress induce endothelial cell differen-
tiation and participate in induction of endothelial tube
wrapping by mural cells (98).

The dorsal aorta also consists of an endothelial monolayer
surrounded by dispersed mural cells, pericytes, and SMCs
(575). Three main functional proteins of SMCs have been
cloned in zebrafish: �-SMC actin (575), SM22-� (transge-
lin, associated with the smooth muscle contractile appara-
tus) (590), and SMC myosin (MYH11) (3). In this context,
Ando et al. (11) and Stratman et al. (507) recently demon-
strated that these mural cells (SMCs and pericytes) play a
predominant role in the structure and function of the aortic
wall. They observed the mesodermic origin of these cells,
migrating from the sclerotome (somite) towards the dorsal
aorta, wrapping around the endothelial tube. Platelet-de-
rived growth factor (PDGF)-BB and receptor signaling me-
diate this phenomenon in a large part. Stratman et al. (507)
also demonstrated the structural role of these mural cells,
which are capable of promoting the assembly of vascular
matrix (basement membrane) and of limiting the dorsal
aortic diameter. An experimentally induced defect in mural
cells of zebrafish leads to a larger aortic diameter and a
more distensible wall (507). Whereas endothelial cells are
able to synthesize and degrade the matrix collagen by pro-
teases, mural cells synthesize antiproteases promoting the
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integrity of the arterial wall. Mural cells also promote ad-
renergic sympathetic differentiation of external neurons in
a PDGF-dependent manner (156).

B. Adaptation to the Terrestrial Way of Life
(FIGURE 2)

The passage from aquatic to terrestrial life (107) was a great
leap forward, necessitating the adaptation of the circulatory
system to a drastic change in environmental conditions.
This involved extensive differentiation of organ functions,
such as in the lung and kidney, development of the skeleton,
limbs with digits (9), regulation of the internal environment
(460), and the transition from poikilothermy (ectothermy)
to warm-bloodedness and finally to endothermic homeo-
thermy (37°C), etc.

These multiple evolutionary transitions were also associ-
ated with the passage from oviparity to viviparity. This shift
was associated with a change in internal temperature. Squa-
mate reptiles (lizards and snakes) are unique models for
studying the evolution from oviparity to viviparity (382).
These numerous adaptations have also involved many evo-
lutionary exaptations and dead-ends. The evolution of
coelacanths, lungfishes, and tetrapods (sarcopterygians),
possessing fleshy fins, to four-limbed vertebrates are exam-
ples of these exaptations, preceding and allowing terrestrial
development. Some teleosts possess a dorsal swim (gas)
bladder, allowing them to remain at their current water
depth without energy consumption. Lungfish (103) (dipnoi)
acquired the ability to breathe air by functionally develop-
ing lung alveoli from this gas bladder, concomitantly to gills
(262).

In these evolutive stages, transitions from ectothermy to
endothermy and from cold- to warm-blooded circulations
take place through heterothermy, associated with increas-
ing functional activities and biochemical energy dissipation,
generating predominant endothermic heat production. This
transition not only involves endothermy but also the regu-
lation of body temperature constancy (homeothermy)

(191). Warm endothermy and homeothermy (37°C) pro-
mote biochemical activities through thermal molecular mo-
tion that can be monitored by magnetic resonance imaging
(MRI) (401). Enzymatic activities are highly sensitive to
temperature. The relationship between warm body temper-
ature and activity is exemplified by hibernation as an adap-
tive process to low (winter) external temperature in fishes
(498) and some mammalian species. Body temperature
drops below 10°C, associated with reduced metabolic ac-
tivity and torpor (232, 545). Given its ability to decrease
metabolic activity, hypothermia may be of therapeutic in-
terest (232). One application of hypothermia is to use it for
inducing heart arrest and myocardial and eventually cere-
bral protection, during cardiac surgery. Different molecular
pathways are involved in hibernation: adenosine in the cen-
tral nervous system (CNS), hibernation specific proteins
(HPs) produced by the liver, cold-inducing RNA-binding
protein (CIRP), CLOCK and BMAL1 genes, etc. (232,
545).

The main evolutionary step for the circulatory system was
to become an in-parallel closed system in mammals, in con-
trast to the in-series closed system in fishes. One of the main
adaptive measures was an extensive tissue and molecular
remodeling (120) of the heart (46), transiting through car-
diac shunts, a regulated mixture of oxygen-rich and oxy-
gen-poor blood, and finally a progressive septation of the
heart chambers, involving first the septation of the atria,
followed by the ventricles and the right and left large arter-
ies in reptilians (224). The pulmonary versus peripheral
resistances, under the respective controls of the cholinergic
(parasympathetic, pulmonary) and adrenergic (sympa-
thetic, peripheral arteries) systems, regulate the shunting
proportions during this transition. The low oxygen partial
pressure resulting from the mixing blood is compensated
for by a sixfold increase in red blood cell (RBC) diameter
(50 �m), compared with that of humans (7 �m) (214).
Moreover, RBC diameter correlates with capillary diame-
ter, minimizing the distance between RBCs and tissue, thus
optimizing gas exchange (495). The oxygen transporting
ability of hemoglobin is also modulated by globin isoform

Sea life MammalsTerrestrialization

FIGURE 2. Terrestrialization was associated with important transitions in morphology and functions of all
organs including the circulation.
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expression, observed in phylogenesis and ontogenesis
(506). This phylogenic heart septation event is recapitulated
in the process of ontogenic septation, which takes place in
the fetal heart in mammals and is mainly related to epige-
netic involving three-dimensional chromatin remodeling
processes (reviewed in Ref. 371).

Progressively, sympathetic innervation increased, whereas
parasympathetic activity decreased, enhancing both the ox-
ygen saturation and the frictional viscous forces in the ar-
terial system, on one hand, and the specific venous charac-
teristics (low oxygen saturation/low resistances) in the pul-
monary artery, on the other hand. A low blood pressure and
velocity in the pulmonary circulation is necessary to achieve
maximal diffusion of gas through a very thin air-blood bar-
rier. With the complete septation of the heart and arterial
trunks in mammals and birds, the two systems became en-
tirely separated and thus operate in parallel. Compared
with amphibians (20–40 mmHg), arterial pressure progres-
sively increases in reptilians (40–60 mmHg) to reach high
values (120 mmHg) in mammals.

1. Gravitational forces

Among mammals, there is a huge pressure range in relation
to specific environments and posture, including the highest
value in the giraffe (�200 mmHg) in which the cardiac
muscle weight reaches 2–3 kg (300–350 g in human). This
is proportional to the body mass but limits cardiac output
(heart rate 55 beats/min), as LV cavity is small, low stroke
volume) (494). This compensates the high gravitational
forces (negative work) due to the exceptional length of the
neck (421).Functional and structural resistances in the leg
arteries (increased muscularization) also compensate for
this gravitational forces (428). When drinking, the giraffe
lowers its head to the ground level (–4 m), and the arterial
pressure acutely increases to 280–160 mmHg, but progres-
sively normalize, whereas venous blood pools in the jugular
veins associated with an important increase in venous pres-
sure (from 0 to 45 mmHg) causing an important increase in
jugular vein cross-sectional area (from collapse to 3 cm2)
(68). This neck tilt down is associated with autoregulation
of pulsatile flow in arterioles (mechanical energy dissipation
due to frictional forces) which compensates for large
changes in arterial pressure (331). In humans (Homo erec-
tus), the pressure stability associated with environmental
changes during exercise (485), the change from supine to
upright posture (gravity), and life in space (microgravity)
(318) is mainly maintained by the baroreflex.

The evolutive progressive acquisition of arterial blood pres-
sure is associated with the structural layering of the arterial
wall from inside to outside, involving the muscularization
of the media and the development of the adventitia. The
adventitia, the outer loose connective tissue layer, conveys
sympathetic nerves and a complete vascular system: arteri-
oles, capillaries, veins (vasa vasorum), and lymphatics. The

outer adventitia extends through the peri-arterial adipose
tissue. Adventitial components inwardly signal to the media
using intracellular signaling and intercellular conductance
(see below). In contrast, the medial muscularization evolves
without specific tissue angiogenesis, remaining an avascular
tissue (except the external 1/3 of the thoracic aorta) (583)
and therefore represents an immune privileged site, poorly
accessible to leukocytes in the absence of intramural capil-
laries and venules (357). Physiologically, the media are di-
rectly fueled by outward convection-diffusion of oxygen
from circulating RBCs into the plasma and then radially
into the arterial wall interstitium and cells (see below). Sim-
ilarly, glucose is outwardly convected from plasma into the
wall. The endothelium remains a monocellular layer as in
fish.

Kidney function develops in parallel, regulating the interior
fluid environment evolving with terrestrialization. In this
context, the renin endocrine system appears as a link be-
tween the homeostatic function of the kidney and the cir-
culation, able to respond differently to acute or chronic
stimuli by using SMC plasticity. Renin first appears in te-
leosts (396), but its functional complexity greatly increases
during the transition from aquatic to terrestrial life, partic-
ipating in terrestrial adaptation, which involves numerous
functions linking the kidney to internal homeostasis, arte-
rial blood pressure, salt retention, hormonal stimulation,
endocrine and local systems, etc. In this context, the epige-
netic memory of renin secretion and myoepithelioid pheno-
type recruitment (hyperplasia) of SMCs in afferent arteri-
oles to glomeruli were recently deciphered (326). The renin
gene is a very old gene (400 � 106 years), and cells express-
ing renin predate SMCs in the glomerular afferent arterioles
(480). In quiescent conditions, SMCs in the glomerular ar-
terioles are of a canonical phenotype (�-actin, myosin), and
renin-secreting myoepithelioid cells are rare. However, en-
vironmental chronic stimulating conditions (decrease in
blood pressure, �-adrenergic stimulation, loss of sodium,
inhibition of angiotensin II feedback, etc.) cause an increase
in renin secretion via hyperplasia of myoepithelioid cells.
The upstream adjacent arteriolar SMCs shift their pheno-
type to a myoepithelioid one (348). This ability both to
conserve the smooth muscle phenotype and to reacquire the
ability to synthesize and secrete renin are under epigenetic
memory control. A super-enhancer locus [topologically as-
sociating domain, TAD (13)], functionally involving lysine
27 acetylation of histone H3 (H3K27) and chromatin re-
cruitment of p300 as histone acetyltransferase (HAT), con-
trols the expression of numerous transcription factors and
pathways, including the cAMP signaling and Notch path-
ways, which re-enable the switch to the myoepithelioid phe-
notype of arteriolar SMCs and renin secretion (326). These
data provide evidence of the importance of chromatin
three-dimensional remodeling in the definition and plastic-
ity of the SMC phenotype. The epigenetic molecular mem-
ory and the ability of these signals to diffuse from one SMC

JEAN-BAPTISTE MICHEL

1784 Physiol Rev • VOL 100 • OCTOBER 2020 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev by Sean Boyer (076.100.114.109) on August 24, 2020.



to the next via connexins (see below) induce hyperplasia of
the juxtaglomerular apparatus in response to chronic stim-
uli of renin synthesis and secretion, including low perfusion
pressure.

C. Evolutive Ontogeny

As described above for terrestrialization, the change in re-
productive mode from oviparity to viviparity was also an
important step in evolution, linked in part to the change in
internal temperature. Oviparity is characterized by the for-
mation of eggs, containing the embryo and a yolk sac, cov-
ered by a more or less calcium-rich shell, which are retained
within the body for most of the embryonic period. In the
second phase, the egg is laid, and the embryo matures ex-
ternally (incubation period) depending on its own energetic
yolk reserve (lecithotrophy). Since the yolk sac is relatively
easy to observe, the initial descriptions of vasculogenesis
and angiogenesis were made from bird eggs more than 100
years ago (534). Observation of the initial vascular devel-
opment showed the formation of a capillary plexus at the
surface of the yolk sac, which in part regresses in relation to
the blood flow that selects the larger endothelial tubes.
These develop and grow as the vitelline artery in relation to
the embryo and the pulsatile embryonic heart, i.e., the ve-
nous return, ultimately forming a closed system. These ob-
servations have been progressively enriched with new infor-
mation concerning the evolution of the capillary plexus to a
branching and enlarged organized system through a pattern
of capillary selection and increased blood flow rate (231).
Finally, this evolutionary selection was described as an ar-
terial pole and a venous pole, and mechanisms of discon-
nection of the arterial capillaries and reconnection to the
venous pole are supported by endothelial cell plasticity in
response to flow (frictional forces) generated by the beating
heart (300).

In contrast to oviparity, viviparity retains the embryos in
utero throughout the embryonic and fetal phases. In this
reproductive strategy, the energetic support of development
comes directly from the nutrient and oxygen exchanges be-
tween the uterine circulation and the fetal placenta (placen-
totrophy) and represents an important step in evolution.
The evolutive advantage of viviparity is the placenta’s dy-
namic ability to adapt metabolic support to developmental
demand (382) and therefore reversal from viviparity to the
ancestral oviparity is extremely rare in evolution (190). For
instance, both reproductive modes are present in squamate
reptiles, sometimes from the same lineage (Lacerta
vivipara) (513), and cold external temperature seems to be
the environmental condition that promotes evolution to-
wards viviparity. In oviparous squamate reptiles, the initial
ovum is composed of the embryo and a large yolk sac sur-
rounded by different membranes, including the outer egg-
shell. Squamates differ from birds in the cell components of
the yolk sac and in the processes of vasculogenesis and

angiogenesis associated with membrane dynamics (503). In
particular, endodermic cells invade the yolk sac, and these
cells are able to engulf the yolk by endocytosis and trans-
port it towards the developing vascular system. The transi-
tion from oviparity to viviparity is ensured by prolonging
intrauterine egg retention and by a considerable reduction
in eggshell thickness, allowing the extraembryonic mem-
branes and the uterine epithelium to be brought together to
form a placenta. This evolution correlates with the de-
creased secretion of proteins and mineral components nec-
essary for eggshell formation by the uterine gland (65). In
this context, in all amniotes the yolk organ in oviparity may
be considered a potential evolutive exaptation towards the
formation of the feto-placental unit in viviparity. In partic-
ular, the “yolk placentae” in some reptilians develops as an
intimate relationship between the embryo and the mother.
A vascular splanchnopleure develops at the perimeter of the
yolk sac. This yolk vascular system makes contact with the
uterus if viviparity evolves and forms the umbilical cord.
The vessels at the perimeter of the yolk sac directly partici-
pate in placentation in live-bearing lizards and snakes.

The development of the circulation in mammals is termed
vasculogenesis in the embryo but angiogenesis in the fetus.
Heartbeats appear first at 22 days of human gestation, and
blood islands, composed of hemangioblasts derived from
both the lateral mesoderm and the yolk sac (154), lead to
the formation of angioblasts, endothelial cells, and hema-
topoietic cells. The heart beats generated pulsatile flow.
Several growth factors [fibroblast growth factor (FGF)-2,
PDGF-BB, VEGF] and frictional forces-dependent stimula-
tion (483) control the angiogenesis. Extension of the vascu-
lar plexus takes place via sprouting and intussusceptive
(splitting angiogenesis) growth, forming endothelial tubes
related to VEGF receptor expression. Development of the
fetal circulation is predominantly linked to placental func-
tion (153). Endocrine gland (EG)-VEGF (prokineticin,
PROK1/2) plays a pivotal role in the specific development
of placental angiogenesis and chorionic villi (7). Exchanges
of oxygen, nutrients, and CO2 between the mother to the
fetus take place via interaction of the uteroplacental circu-
lation (uterine arteries, decidual spiral arteries, intervillous
spaces) with the fetoplacental circulation (umbilical arter-
ies, fetal capillaries, umbilical veins). Oxygenated blood
and nutrients are transported to the fetus by the single um-
bilical vein and conversely more mixed blood and fetal met-
abolic products are transported back to uteroplacental vein
by the umbilical arteries (FIGURE 3). There are some shunts
(25% of arterial blood) within the placenta between the
umbilical arteries and vein, adding kinetic energy in the
umbilical vein.

Mesenchymal stem cells (MSCs) differentiate into mesen-
chymo-angioblasts, spread and adhere to fibronectin, and
generate mural cells, SMC, pericytes, and bone marrow
SMCs under FGF2 and PDGF control (493). Endothelial
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cells and SMCs are derived from the mesoderm, except for
SMCs of the ascending aorta and corneal endothelial cells,
which come from the neural crest (397) and SMCs of the
coronary artery which originate from the epicardium and
the neural crest as valvular interstitial cells (364). The ori-
entation of human embryonic totipotent stem cells (hESCs)
is sensitive to mechanotransduction; on one hand, culture
of hESCs on a stiff or elastic scaffold orientates them to-
wards mesodermal lineages, whereas their culture on soft
substrates orientates them towards neural ectoderm (137,
425). On the other hand, culture substrate stiffness can
regulate the YAP/TAZ signaling pathway (nuclear translo-
cation) within the cell (113) (see sect. IIIH). ATP-dependent
chromatin remodelers, DNA methyltransferase (DNMT),
and HAT (p300) also play important roles in the progres-
sion of vascular cell differentiation from the neural crest
(398) or the mesoderm (584). Nevertheless, the impact of
these different origins on the ability of SMCs to adapt their
phenotypes to environmental changes has not yet been ex-
plored in detail. It is also of interest to raise the question of
the regulation of gene expression in cells of different embry-
onic origin towards the common pathway of the mature
SMC phenotype. As in other organs, arterial architecture
during the different stages of development is under the con-
trol of epigenetic regulation of gene expression (252). Be-
sides flow-induced mechanotransduction, arteriogenesis is
under the control of VEGFR2, at least in part, in a ligand-

independent manner (extensively reviewed and illustrated
in Ref. 490).

The partial pressure of oxygen in the umbilical vein and
arteries is ~30 mmHg (3.9 kPa), and the fetal hemoglobin
isoform has a higher affinity for oxygen than the adult iso-
form, binding oxygen from the maternal arterial blood
more avidly (242). The relatively low O2 partial pressure
plays a role in inducing the expression of hypoxia inducible
factor and VEGF during fetal life. The umbilical vein dis-
tributes blood to the inferior vena cava (ductus venosus),
the liver, and the portal vein. Due to the exclusion of the
lung parenchyma during fetal life, the blood flows from
the right to the left atrium through the patent foramen ovale
and from the right ventricle and pulmonary artery to the
aorta through the ductus arteriosus. Positive pressure gra-
dients from the right to the left atrium and from the pulmo-
nary artery to the aorta are necessary for these shortcut
circuits. The left ventricle pumps blood to the aorta, the
brain, and then to the body and placenta. One part of the
aortic and iliac arterial blood flow is diverted towards
the bilateral (symmetrical) umbilical arteries. Function-
ally, the embryonic heart not only supports the pulsatile
blood flow for the embryonic body but also the vital
energetic support through the placental circulation. The
fetal circulation is functionally described as a “via sinis-
tra,” which preferentially drives the oxygenated blood of
the umbilical vein toward the right atrium via the ductus
venosus (25%), and the foramen ovale. Left ventricular
pumping ejects blood in the ascending aorta and the ce-
rebral arterial circulation. In the “via dextra,” the venous
blood from the fetal body returns to the right atrium, right
ventricle, and pulmonary artery and is propelled through
the ductus arteriosus in the descending aorta and, at least in
part, to the umbilical arteries and placenta. Everywhere in
the fetal circulation the oxygenated blood is more or less
mingled with deoxygenated blood, explaining the low O2

partial pressure (67) (FIGURE 3). Therefore, we can propose
that the fetal circulation is a footprint of the intermediate
mixed circulations observed in amphibian and reptile dur-
ing the evolution of species.

Since the fetal heart beats, flow in fetal circulation is pulsa-
tile; this pulsatility can be analyzed by Doppler ultrasound
at different sites, including the placenta, the umbilical cord
(pulsatile flow in umbilical arteries, continuous flow in um-
bilical vein), the fetal arteries (cerebral artery for the brain,
descending aorta, shunts, etc.). The pulsatile velocity signal
is composed of a systolic peak of velocity and a diastolic run
on. These waveforms provide some relative calculated indi-
ces: pulsatility index, relative resistances, absent or reversed
end-diastolic blood flow, etc. For the last 30 yr (323), these
placental and fetal flow pulsatility indices have been used as
prognostic markers of intrauterine fetal growth restriction.
In healthy conditions, the placenta resistance is very low. In
cases of impaired placentation, the uterine part of the pla-

O2 Partial Pressure
Umbilical vein 35 mmHg

Arteries 25 mmHg
Arterial Pressure
< 40 mmHg

Placental Circulation
40% total fetal circulation

FIGURE 3. Circulation during fetal life in humans. The fetal circu-
lation is complex, associating the fetus’ own circulation to the pla-
cental circulation (viviparity). The fetal circulation is characterized by
the absence of lung function, predominance of kinetic energy (flow),
low arterial pressure, low O2 partial pressure (relative hypoxia), and
right-left shunts. The umbilical cord, involving the vein, the two ar-
teries, and the placenta, is an integral part of the fetal circulation.
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centa is defective creating an increased impedance to flow,
inducing an increase in umbilical artery pulsatility index or
an absent or reverse diastolic flow (322). This increase in
placenta impedance could be due to intervillus/intravillus
structural and functional mismatch (475) leading to relative
fetal hypoxemia. A decrease in pulsatile index in the middle
cerebral artery (increase in diastolic run-on) associated with
diastolic backflow in the aortic isthmus provides evidence
of flow redistribution towards the brain (322). These differ-
ent vascular changes associated with impaired placentation
also impede the fetal growth and development. In the same
way, pulsatility changes in the ductus venosus (diastolic
backflow) can indicate a risk of cardiac insufficiency. These
fetal anomalies can have postnatal consequences that per-
sist throughout life (cardiovascular diseases, metabolic syn-
drome, hypertension) as developmental origins of diseases
(203, 204). These developmental footprints on disease are
essentially epigenetic by nature (554).

The blood in the fetal aorta is ~30–40 mmHg at the end of
gestation. The fetal mixing circulation is essentially flow
without important peripheral resistance (pressure), as in
fishes. This fetal impact of flow on arterial structure is ex-
emplified by the asymmetrical development of iliac arteries
in cases of a single umbilical artery (343). In these cases,
only one umbilical artery develops from one embryonic iliac
artery, leading to an asymmetrical flow between the two
fetal iliac arteries. As a consequence, the iliac artery sup-
porting the umbilical artery and the homolateral leg flow
develops more than the contralateral iliac artery supporting
only the fetal leg flow. At the end of gestation and after
birth, the homolateral iliac artery is larger than the con-
tralateral one, and its wall is thicker and richer in elastin
and in other extracellular matrix (ECM) components (con-
ductance artery). In contrast, the smaller contralateral iliac
artery appears hypoplastic, resembling a muscular rather
than a conductance artery (343). In this context, a single
umbilical artery, either associated with other congenital or
chromosomal anomalies or isolated, represents a risk factor
for poor perinatal outcome (383). Since the totality of blood
volume (body � placenta) flows through the aorta during
fetal life, this could explain why the aortic diameter is so
large, forming an elastin-rich arterial blood reservoir af-
ter birth. Consequently, the shear stress is low (5– 8 dyne/
cm2), whereas the tensile stress is high in relation to the
large diameter (Laplace law) of the aorta after birth.
These observations also provide evidence for the role of
shear stress (frictional forces) as the driving force for fetal
structural exaptation (preprograming) of the arterial
wall, in the absence of high arterial pressure. Of note, the
fetus is warm-blooded but essentially exotherm, and its
temperature depends on the mother’s temperature
through amniotic fluid.

At birth, circulatory arrest in the denervated umbilical cord
mediated by powerful vasoconstriction of the umbilical ar-

teries and vein, followed by first breath inflation of the lung,
induces an increase in body blood flow (loss of resistance),
with a decrease in pressure in the pulmonary circulation
(376). Conversely, the increase in arterial pressure is due to
an acute rise in arterial resistance. The initiation of the
pulmonary circulation increases left atrial pressure, rapidly
closing the foramen ovale associated with the gradual clos-
ing of the ductus arteriosus in response to vasoconstrictive
prostaglandins of lung origin (226). Likewise, the periph-
eral frictional force rapidly rises in left side of the circula-
tion in response to the catecholamine rush and SMC tonic
contraction, under control of the CNS (411). Therefore,
birth induces a complete change in hemodynamic load, in-
volving not only flow as in fetal life but also arterial pressure
and loss of umbilical flow. The adaptation of the wall to the
pressure load is not instantaneous but is a progressive pro-
cess, which takes place during the 16 yr of growth in hu-
mans from infancy through childhood up until the end of
puberty. For instance, the postnatal systolic and diastolic
arterial pressures are 75/40 mmHg, respectively, 90/50
mmHg at 1 mo, 105/63 mmHg at 2 mo, and 106/69 mmHg
at 1 yr (236) with the acquisition of upright posture. It is of
interest that the progressive increase in arterial pressure
from childhood to adulthood is highly dependent on indi-
vidual height (independent parameter) in the upright pos-
ture during growth (99), providing evidence for the role of
gravitational forces in blood pressure development in hu-
mans (see above). Therefore, each evolutionary stage im-
prints the circulatory development in the fetus: early heart-
beats, predominance of flow, intracardial shunts, and low
arterial pressure. The transition from oviparity to viviparity
thus introduces an entirely transient event, energetically
and dynamically fueled by placental function (84). This
allows for the development of organ function by an adapted
energetic support. However, the birth revolution is not the
end point, and the immature circulation continues to evolve
throughout growth to adapt to the pressure load in the
arteries, to gravity due to upright posture, to the increase in
specifications and activities of organs, to terminate angio-
genesis, etc., and finally to dynamically and permanently
equilibrate the energy transfer and dissipation between flow
and pressure dependent on mechanotransduction in ma-
trix-rich conductance arteries, and on SMC connections in
resistance arteries.

The acquisition of upright posture in Homo erectus (–2 �
106 yr) was associated with the sphenoid verticalization and
the development of consciousness in Homo sapiens (–300 �
103 yr) and its translation by speech and writing, necessi-
tating autoregulation of the cerebral blood supply, influ-
enced by gravitational forces (50), vasomotor reactivity,
and exact neurovascular coupling of cerebral blood flow to
neuronal activities (580). The specification of cerebral
blood flow is influenced by intracranial pressure (112) and
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pulsatility of the cerebrospinal fluid (112), low cerebral re-
sistance, and compliance of cerebral conductance arteries
(536).

III. STRUCTURE/FUNCTION RELATIONSHIP
WITHIN THE MAMMALIAN ARTERIAL
CIRCULATION (FIGURE 4)

As described above, the main characteristic of the circula-
tion in mammals is the in-parallel development of a low-
pressure compartment involving the venous return and the
pulmonary circulation and a highly pressurized arterial
compartment, related to peripheral resistance to flow, in-
volving complete heart septation.

The pulmonary circulation is a low resistance system with
high pulsatile flow, comparable to the circulation in fish.
Thus pulmonary circulation in mammals can be considered
as an imprint of the “in series” closed circulation observed
in lower vertebrate. The pulmonary compartment is essen-
tially capacitive: changes in pressure are associated with
changes in vessel diameter, and increased gas exchange ca-
pacity is associated with recruitment of new alveolar capil-

laries (591). In the pulmonary artery, the kinetic energy
predominates and the pressure variations are directly de-
pendent on flow and frictional forces on the wall and within
the blood. Adaptation to exercise is a good example of this
low resistive regulation (see Ref. 389 for complete review)
in which exercise induced an important increase in pulmo-
nary mean arterial pressure, from 15 mmHg at rest to 35
mmHg during exercise. This is particularly true in race-
horses in which the mean pulmonary arterial pressure can
reach 60–80 mmHg with a proportional increase in capil-
lary pressure, at the height of effort. These observations are
not without consequences, since they are associated with
frequent pulmonary hemorrhages in racehorses (225). Such
pathological hemorrhages are rarer in humans (122) but
can reveal subjacent lung disease (pulmonary amylosis, pul-
monary vein stenosis). Moreover, an exercise test could be
used to predict chronic pulmonary hypertension (PH)
(390). In this context, abnormal degradation of von Wille-
brand factor (vWF) is of prognosis value in PH (313) (see
sect. VIC for more details on vWF and shear stress). The
relationship between shear-dependent vWF degradation
and pulmonary hemorrhages in this context remains to be
established.

Elastic arteries Muscular arteries Resistance arteries

SMC density and
interconnections

Collagen

Elastin

Compaction Dilation

SMC contraction Basal tone Relaxation Counterflow depolarizing wave

Sym
pathetic nervous system

Adventia

Media/SMC
Endothelium

A  Structure B  Regulation

C  Function

FIGURE 4. Structures/functions of arteries. A: the structure of arteries is dependent on their principal
function: conductance and energy transfer for elastic arteries, local adaptation of flow to energetic demands
for muscular arteries, high frictional forces, and mechanical energies dissipation for resistance arteries. B:
contraction and relaxation of smooth muscle cells (SMCs) and their respective effects on compaction and
dilation of the arterial wall tissue. C: regulation of vasomotricity involving maintenance of the arterial contractile
tone by the adventitial sympathetic signals, which diffuse inwards via the medial SMC connexins; and the
predominant role of endothelium in vasodilation via the flow-dependent shear stress and retrograde endothelial
depolarizing wave, initiated by organ function and its upstream diffusion through the endothelial cell
connections.
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The mammalian heart functional architecture was poorly
understood until recently. Francisco Torrent-Guasp in
Spain described for the first time (1972) the ventricular
myocardial band (for exact figures, see Refs. 64 and 537)
between the aortic valve and the pulmonary artery orifice,
which curls on itself in two (basal and apical) spirals, figur-
ing an 8, clockwise dynamic loops and circumferential fi-
bers, inducing contracting and twisting of the ventricular
cavities. This functional architecture allows alignment of
the LV cavity on the aortic orifice in isovolumic protosys-
tole (elongation of the LV apex, and tubularization of the
LV outflow tract) and during systolic ejection, with a min-
imum dissipation of velocity vectors. This model not only
explains the systolic pre- and ejection phase, but also the
diastolic phase of blood suction within the ventricular cav-
ities, inducing vortices during LV diastolic filling (71) and
the preorientation of this vortex towards the aortic root for
ejection. The vortex corresponds to rotational kinetic en-
ergy without efficient translational motion. Diastolic vorti-
ces are inherent to the cyclic nature of ventricular function,
including the velocities fillings of the LV cavity during dias-
tole without outflow. In this evolutionary context, the
pumping ability of the left ventricle is no longer just to
generate phasic flow, as in fishes, but to generate phasic
flow against the arterial peripheral impedances, generating
arterial flow and pressure.

This functional anatomy also explains the specific phasic
hemodynamics of the coronary circulation in the left ven-
tricular myocardium. The contractile twisting force first
completely impedes intramyocardial flow entry during sys-
tole but induces a highly pressurized blood stagnation in the
epicardial coronary arteries, not compressed by the myo-
cardial contraction. Second, systolic contraction squeezes
out the intramyocardial diastolic blood volume into the
venous sinus, causing venous flow ejection in the non-post-
loaded right atrium (94). Conversely, myocardial inflow in
diastole is high, inducing a high frictional shear rate in
coronary arteries.

Contrasting with the capacitive part of the circulation, the
SMCs and ECM-rich walls of the conductance and muscu-
lar arteries support a basic and phasic tensional stress, pro-
portional to the pressure and the vessel dimensions (Laplace
law). The acquisition of SMC-dependent peripheral resis-
tance in the distal compartment and high tensional stress in
the conductance compartment made necessary the develop-
ment of a topological arrangement of the arterial wall to
enable it to assume these different functions (FIGURE 4A).
This differential topology also influences the mechanical
transduction signaling in these two different compartments
involving the predominant role for cell adhesion to ECM in
conductance arteries (lower SMC density/high tensile
stress), and for the intercellular connections in muscular
and resistance arteries (higher SMC density/lower tensile
stress) (see sect. IIIG). This involves a three-layered archi-

tecture comprising, from inside to outside, an endothelial
monolayer already existing in the “in series” circulation in
fish, a structurally intermediate media, variably enriched in
SMC and ECM, and an external adventitia.

The “in parallel” implementation of the arterial system is
associated with numerous bifurcations and branching arbo-
rescent structures, allowing a specific anatomical supply of
oxygenated blood to functional organ-specific areas. Thus
the arterial system is also longitudinally compartmented
between conductance elastic and muscular arteries and
more distal resistance arteries, including the intraparenchy-
mal arterioles, flowing into the low-velocity and low pres-
surized capillary system. This implies mechanical energy
(velocity and pressure) dissipation upstream to the capillar-
ies. Both conductance and resistance arteries are composed
of SMCs and ECM in different proportions. The mural cells
present in fish evolve towards SMCs, enriched by a contrac-
tile apparatus that is able to maintain a functional mechan-
ical tone via continuous activation by the sympathetic ad-
renergic tone. This tone maintenance is consumptive of bio-
chemical energetic substrates (ATP and GTP). This is
related to the presence within the SMCs of an actin cyto-
skeleton and smooth muscle myosin, sliding on actin, form-
ing actomyosin complexes. This isoform (MYH11) is the
most recently acquired contractile protein in vascular SMCs
and the first to disappear in cases of SMC dedifferentiation
(27). This isoform is physiologically and biochemically
quite different from the sarcomeric cardiac and skeletal
muscular myosins. The acto-myosin sliding in SMCs is
more than 100-fold slower than in sarcomeric organization,
and smooth muscle myosin interacts with other different
proteins, such as caldesmon and calponin which are not
present in the sarcomere (515).

Elastic arteries are richer than muscular arteries in elastin
and collagen networks synthesized by SMCs, the main mes-
enchymal cells of the wall, but in these arteries, SMCs still
conserve their contractile function through actomyosin
sliding. In conductance arteries, the viscous dissipation of
mechanical energy is represented by the dissipation of pres-
sure and nonlaminar velocity vectors within the arterial
wall (see sect. VB), whereas the frictional forces due to the
longitudinal flow induce proximal reflective pressure
waves, depending on the rigidity of the arterial wall and
bifurcations. In contrast, wall elasticity and compliance in
response to pulse pressure dampen the systolic arterial pres-
sure and restitute (resilience) it as diastolic run-on flow in
conductance arteries (mainly aorta) (240). The structure of
the aorta wall is lamellar associating elastin with SMCs
functions, and the number of medial lamellar units (wall
thickness) is proportional to the dimension of the artery,
whereas blood pressure is relatively constant throughout all
mammalian species. This adaptation tends to maintain a
constant tensile stress per lamellar unit (582).
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Muscular conductance and resistance arteries are richer in
SMCs that are highly interconnected by cell-cell junctions in
a looser collagen network (resistance artery). Distal arterial
and arteriolar tapering is the anatomic and functional site of
high mechanical energy dissipation due to peripheral fric-
tional forces, a drag that protects the downstream capillary
compartment from high blood velocities and pressure, fa-
voring tissue transport of energetic substrates (diffusion
from nonpressurized capillaries to metabolically active tis-
sues). It is also the distal site of energy transfer in which
viscous frictional forces of flow cause it to backscatter up-
stream as a distal reflective pressure wave. Conductance
arteries are the main sites of other noncontractile compo-
nents of circulatory impedance, i.e., SMC tensegrity, com-
pliance and rigidity, branching, pressure wave reflections,
and flow oscillations.

A. Vasomotricity Determines Frictional
Forces and Arterial Pressure (FIGURE 5,
Poiseuille Law)

Since the circulation in mammals is a closed mechanical
system, and temperature constant, the first law of thermo-
dynamics (mechanical energy conservation) could be ap-
proximatively applicable, involving both kinetic (Ek) and
potential (Ep) energy in mammals. Therefore different en-
ergetics, involving heat transformation of Ek, storage of Ep,
transfer from Ep to Ek, but also inversely from Ek to Ep and
dissipation of both are present in the circulation of mam-
mals.

The peripheral resistances to flow comprises the frictional
forces that viscous blood exerts on the vessel wall depend-
ing on its geometry. As evolution progresses, the arterial

frictional forces are not only determined by anatomy as in
fish but are mainly due to SMC arterial function, related to
the contractile tone of the wall in muscular and resistance
arteries. In contrast, the venous system and the pulmonary
circulation remain essentially areas of flow without impor-
tant resistance. An additional role of bifurcations in this
definition of arterial pressure cannot be excluded (see be-
low). Frictional forces also contribute to energy dissipation,
participating in a small way in the generation of heat and
endothermy and, importantly, contributing to upstream
pressure. Viscous frictional forces do not only impact the
wall but also the blood rheology, the interactions between
the particulate components of the blood (circulating cells),
but also some plasma components such as vWF for instance
(see sect. VIC and Ref. 233 for more details).

The usual view of the Poiseuille law considers the pressure
gradient (dp) as the driving force for volume laminar flow
rate (qv) (Ep to Ek transfer) through a regular tube length (l)
with a constant radius (r) and with constant frictional forces
linked to the dynamic viscosity of the blood (�) (FIGURE 5).
In the evolutionary view, we must consider the frictional
forces proportional to flow (qv), viscosity (�) and length (l)
and inversely proportional to the radius power four (dr4) as
the determinant of both upstream blood pressure (https://
www.syvum.com/cgi/online/serve.cgi/eng/fluid/fluid203.
html for a more mathematical demonstration) and down-
stream dissipation of mechanical energy protecting the cap-
illary exchange compartment. Therefore, a small progres-
sive functional decrease in internal radius along the arterial
tree increases the frictional forces and determines a high
arterial blood pressure. This is mainly due to the small
muscular arteries and arterioles (contractile tone) under
control of the sympathetic tone. The high arterial pressure

FIGURE 5. Three representations of the
Poiseuille law in relation to 3 different func-
tions of the flow-dependent viscous fric-
tional forces. Top: the canonical represen-
tation of the Poiseuille law in which the
pressure gradient determines the flow
dragged by the viscous frictional force.
Middle: the tapering of the radius deter-
mines the resistance to flow, and therefore
the upstream pressure. Bottom: how a
small variation in radius defines vaso-
motricity and therefore the local variation
in flow.
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(120–80 mmHg) is the main evolutionary acquisition of the
circulation in mammals. In this paradigm, systemic arterial
blood pressure (energy transfer) upstream and local energy
dissipation downstream are due to the progressive func-
tional tapering of arterial lumen and topological changes in
wall geometry.

To assume this high pressurization in the arterial part of the
circulation, the structure and contractile functions of the
muscular arteries and arterioles differ from that of elastic
arteries by wall tissue morphology, SMC density, contrac-
tility, connectivity, and molecular patterns of regulation
[see outward conductance of soluble mediators, sect. VIB
(386) for more complete description]. Whereas the wall of
conductance elastic arteries is organized as lamellar units
associating one layer of SMCs with one elastic lamina and
intermediate collagens and glycoproteins, resistance arter-
ies are organized as an interconnected assembly of adjacent
SMCs, limited inside by the internal elastic lamina and lim-
ited or not outside by an external elastic lamina. In this
structural context, the function of resistance to flow is pre-
dominantly assumed through connective gap junction
channels between adjacent SMCs, allowing the spreading of
the contractile signal throughout the SMCs. These intercel-
lular channels are composed of connexins (Cx), a family of
21 members in humans in which Cx43, Cx45, and some-
times Cx37 are present in vascular SMCs (433). These
channels allow the passage of small molecules, such as Ca2�

and other ions, signaling molecules, inositol-phosphate
(IP), NAD�, ATP, cyclic nucleotides, miRNA, etc. Variable
intracellular COOH-terminal domains of connexins inter-
act with numerous other regulating cytoplasmic molecules
(reviewed in Refs. 368, 433). Electrical signals (depolariza-
tion waves) also diffuse through gap junctions participating
in the spreading of the contractile tone generated at the
“functional syncytium” of the external interface of the me-
dia receiving sympathetic innervation (101). Gap junctions
and connexins also connect endothelial cells with SMCs via
holes in the internal elastic lamina in resistance arteries and
arterioles (21, 471). Therefore, SMC-dependent arterial va-
somotor tone is tightly controlled by gap junction permea-
bility involving phosphorylation of the intracellular do-
mains of connexin but also mechanotransduction via con-
nexin/fibrillar cytoskeletal interactions (249, 315). This
effect plays an important role in myogenic tone (see sect. III,
G and H).

In summary, frictional forces play important, and some-
times opposite, roles in arterial circulation, as follows:

• By regulating endothelium-dependent vasomotricity in
conductance arteries (see sect. IIIE, FIGURE 4C)

• By producing arteriolar drag to limit blood velocity
and pressure in capillaries (see below myogenic re-
sponse and energy dissipation)

• As the main determinant of systemic arterial pressure

• By regulating vascular coupling to organ function by
their localized decrease (see sect. IIID)

• As the main determinant of angiogenesis and arterio-
genesis during fetal life.

SMC contractile tones in the arterial and/or arteriolar walls
are the main monitors of frictional forces.

B. Branching, Reflection Waves, and
Impedance

The existence of arborescence in the arterial circulation also
raises the question of the relationship of dimension and
angle of the bifurcations between the mother and the
branching arteries (384). This question is subject to the rule
of minimal work. In this context, the aorta appears dispro-
portionally large, but it acts as a secondary elastic reservoir
that accumulates potential energy in systole that it restitutes
as flow during diastole, buffering the phasic potential en-
ergy generated by the left ventricular ejection, therefore
participating in achieving “minimal work” (385). Thus aor-
tic compliance and elasticity is an example of mechanical
energy transfer from pressure to flow, but also potential
energy stress and dissipation within the aortic wall at the
peak of pressure (see below convection), repeated 3 billion
times during a life of 80 yr. The tradeoff is that the pulsatile
tensile stress is particularly high in the aorta in relation to its
large radius (Laplace law), and the aortic SMCs are highly
stretched and strained at each systole.

One of the questions raised by proximal hemodynamics is
the differential between the pressure wave form and flow
wave form in the aorta (563). To put it simply, the outflow
wave is limited to ejection time (systole), whereas the pres-
sure wave form is also maximal in systole but slowly (ex-
ponentially) decreases during diastole. Today, biomechani-
cal models of the pressure waveform consider that there is a
basic (reservoir) blood pressure and resistance, mainly re-
lated to blood volume inertia during diastole, in which the
systolic ejected outflow abruptly generates a compressive
force wave that propagates along the arterial tree (for re-
view, see Ref. 542). The velocity of this propagated pressure
wave (pulse wave velocity, PWV) through conductance ar-
teries is a marker of wall rigidity: the more compliant (elas-
tic) the wall, the more the pulse wave is dampened and
propagated slowly, and conversely, the more rigid the arte-
rial wall, the higher the PWV. This hemodynamic marker is
largely used in clinical medicine, for instance, to evaluate
the rigidity of the arterial wall in hypertension and aging
(292) (see sect. VIF).

All partial obstructions to flow, whether anatomical (bifur-
cations, narrowing) or functional (vasoconstriction, taper-
ing, wall rigidity, viscous drag), increase general and/or lo-
cal frictional forces and dissipation, generating “reflection”
pressure waves. The role of bifurcations in these reflection
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waves has been remarkably exemplified by Alberto Avolio
and colleagues in comparative studies of the central pres-
sure curve in the snake (python), which has a streamlined
aorta with orthogonally branched small arterial collaterals,
and the kangaroo, in which the lower part of the body is
highly muscular with a large number of arterial bifurcations
and muscular arterial terminations. In the python, the dia-
stolic pressure curve decreases regularly without rebound
(25), whereas the central pressure curve of the kangaroo
presents a protodiastolic rebound, with a peak intensity
superior to the systolic rebound (24) (FIGURE 6), corre-
sponding to the python’s systolic pressure curve with the
addition of the delayed reflective wave in diastole. At any
arterial bifurcation, the flow impingement and energy dis-
sipation within the arterial wall are dependent on the flow
velocity and the relationship between the respective calibers
and angles of the upstream artery and the branches. In this
context, pressure reflection waves could be considered as an
energetic transfer from Ek to Ep. More proximal reflection
waves, due to aortic rigidity, enhance the systolic peak pres-
sure, increasing the differential systolo-diastolic pressure, a
phenomenon usually observed with aging. Such general or

local dissipative impingements and reflection waves play
important roles in aging and in site-specific pathologies
(atheroma, aneurysms, see below), respectively.

The relationship between phasic flow and phasic pressure in
conductance arteries can be represented by harmonic anal-
ysis (Fourier transformations) and the relation of sinusoid
decomposition of pressure to sinusoid decomposition of
flow. Impedance in the blood circulation is a measure of
how the arterial system resists the motion imposed by pha-
sic flow and the associated phasic forces related to viscosity,
inertia of blood capacitance and wall elasticity, also depen-
dent on heart rate. Impedance in the arterial system can be
general, usually measured in the aorta, or localized at spe-
cific points. For example, bifurcations or stenoses and post-
stenotic dilations may be considered as localized hot spots
in which dissipative forces [dispersion of velocity vectors,
loss of laminar flow, transverse wall shear stress (367)]
increase the dissipation of mechanical (Ek and Ep) energies
within the wall. Finally, the combination of hemodynamic
elements defining local and general impedance (frictional
forces, inertia of the blood mass, rigidity or elasticity of the
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FIGURE 6. The role of bifurcations in pressure reflection waves. In the python, blood flow is essentially
laminar and does not generate important reflection waves. Therefore, diastolic pressure declines regularly. In
the kangaroo, due to the considerable development of striated muscle of hindlegs and tail, the circulation of the
lower limbs is highly developed and arborescent (multiple bifurcations, loss of flow laminarity), whereas the
anterior limbs and the upper circulation have regressed. This special architecture induces a high level of
flow-generated pressure reflection waves (kinetic energy dissipation and transfer), which promote a delayed
(with respect of left ventricular ejection) protodiastolic peak of pressure, higher than the systolic one. [Redrawn
from Avolio et al. (25), Avolio et al. (26), and Nichols et al. (394).]
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arterial wall, reflection waves, etc.) is the main determinant
of the energy transfer, from Ek to Ep, the most important
hemodynamic acquisition in the evolution of species from
teleosts to mature mammals.

C. Sympathetic Influx Determines
Contractile Tone of the Arterial Media
(FIGURE 4C)

In mammals, arteries are innervated by postganglionic sym-
pathetic fibers, which develop in the adventitia, the outer
layer of the arterial wall, and interact with the SMCs
through the external elastic lamina. The innervation density
increases as the arterial diameter decreases. Sympathetic
innervation is the main determinant of the arterial contrac-
tile tone via release of catecholamines in the synapses be-
tween neurons and SMCs. These neurotransmitters act
through the �1 adrenergic receptors, inducing phospho-
lipase C activation, the intracellular release of inositol phos-
phates, calcium entry, the formation of calcium-calmodulin
complexes, the translocation of protein kinase C (PKC) to
membranous diacylglycerol, the phosphorylation of numer-
ous contractile proteins (myosin light chain, calponin,
caldesmon), and inactivation of phosphatases (rho kinase)
(311). All these mechanisms are dependent on phosphoryl
transfers to contractile proteins, using ATP or GTP as en-
ergetic substrates, which are both produced by mitochon-
dria (O2 consumption) through electron transport. There-
fore, mitochondria are permanently stimulated in arterial
SMCs to produce ATP and GTP for maintaining the arterial
tone (sliding of actomyosin), but also spontaneously release
free electrons (e�) and reactive oxygen species (ROS) and
produce heat proportional to their activity. Free e� and O2

�

are permanently chelated by superoxide dismutase (SOD2,
OH� � O2) (612). In contrast to myocardial phasic con-
traction, in which calcium entry could directly bind to tro-
ponin C and activate the contractile apparatus (excitation-
contraction coupling), there is no direct action of Ca2� on
SMC tonic contraction. All the molecular mechanisms are
indirect, mediated by Ca-calmodulin complex and kinases,
phosphorylating and dephosphorylating target proteins as-
sociated with actomyosin (myosin light-chain kinase and
phosphatase, caldesmon, calponin, etc.). Of note, a similar
signaling pathway (Ca-calmodulin complex and kinases)
controls the endothelial cell activity by stimulating nitric
oxide (NO) synthase, inducing subjacent SMC relaxation
and vasodilation (349).

In the arterial media, the inward sympathetic tone spreads
from outside to inside by diffusion of second messengers
(Ca2�, inositol phosphates) via connexins through the SMC
network of muscular and resistance arteries, maintaining
contractile tone. Contractile tone is more important in
small than in large arteries because of the denser innerva-
tion and the easier inward and longitudinal diffusion of the
contractile second messengers via the denser SMC connec-

tions, which increase with the reduction in arterial diameter
and the decreased amount of ECM interposed between
cells.

The interactions of sympathetic innervation with the arte-
rial wall are not limited to SMC contractile tone. Arterial
SMCs also participate in the development of the sympa-
thetic axons through the outward release of neurotrophic
factors (135), signaling for guidance and function of the
axons along the arterial tree. Conversely, sympathetic tone
contributes to the differentiation of contractile SMCs, arte-
rial maturation, and wall structure (505).

Arterial blood pressure remains relatively constant in hu-
mans, despite the changes from supine to upright postures
and back. This is largely due to the baroreflex, which senses
blood pressure changes in the carotid sinus, protecting the
brain from perfusion pressure variability by compensating
for increased gravitational forces (160). The upright pos-
ture was acquired fairly late in the great apes, in parallel
with the considerable development and diversification of
cerebral activities, including the adaptation of the anatomy
(456) and physiology of the cerebral circulation. Arterial
adaptation to cognitive functions in humans (410) was and
remains one (perhaps THE one) of, if not THE major chal-
lenges for understanding the dynamics of evolution of the
brain (a full comprehensive synthesis of this question re-
mains out of the scope of the present review). Numerous
physiological reviews have dealt with the question of cere-
bral blood flow and its regulation, the blood-brain barrier,
orthostatism, etc. (see Refs. 230 and 516 for recent re-
views). For understanding cerebral blood flow regulation as
an adaptation of the perfusion pressure to gravitational
forces of the perfusion pressure, the baroreflex, the heart
and the venous system in giraffes are of particular interest
(363). Because their intracranial circulation is continuously
exposed to variations in gravitational forces and cerebral
blood flow, giraffes have a highly functional baroreceptor
system (273). They generate sufficient arterial perfusion
pressure at the top of the neck to permanently ensure suffi-
cient cerebral blood flow against gravitational forces. This
energetic and territorial transfer is ensured by the redistri-
bution of peripheral resistances, involving an important
muscularization of the leg arteries (362). These observations
suggest that the central nervous system controls perfusion
pressure and blood flow in the brain. Furthermore, these ob-
servations support the Harvey Cushing theory (110) that brain
perfusion regulates systemic arterial pressure. This concept is
of importance in humans (421), since the evolutionary devel-
opment of brain cognitive functions will require more and
more specifically localized blood flow.

Accordingly, this predominant role of the baroreflex, trans-
mitted by the carotid sinus nerve (436), has led to the proposal
of baroreceptor-activating therapy, in which chronic stimula-
tion of the nerve by electrodes decreases resistant hypertension
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(116, 598). Nevertheless, the cost-effectiveness ratio of this
new technology remains controversial (431).

Another important phenomenon associated with the pres-
sure-dependent stretching of the muscular arteries and ar-
terioles is the myogenic tone: in response to pressure-depen-
dent acute change in tensile stress, more Ca2� enters the
SMCs and leads to actomyosin activation and SMC con-
traction (277). This phenomenon is well-described ex vivo
in small resistance arteries, in which it dampens the pressure
wave and drags the flow wave, protecting the capillaries
from any acute increase in mechanical strength. Recently
the determinants of the myogenic tone have been extended
to pulsatile pressure which induce cyclic stretching ex vivo
in the mouse posterior cerebral artery (441). The data show
a positive interaction between pulse pressure, myogenic
contraction, and flow-mediated vasodilation. This interac-
tion involved endothelial NO modulation.

The SMC contractile response to acute change in pressure in
elastic arteries is less documented. Nevertheless, it has been
shown that active contractile tone in response to increased
passive stretching prevents delamination of the aorta in
mice sensitized to acute dissection (152). Both calcium
channels and G protein receptors are involved in this re-
sponse to stretch (266). The integrality of the cytoskeleton,
including actomyosin sliding, and its link to the cell mem-
brane and the calcium channels are necessary for this phe-
nomenon (452). Strengthening of the myogenic tone in re-
sponse to acute increase in blood pressure potentially exist-
ing in conductance arteries is a necessity for preventing
delamination. This has been observed in vitro in cultured
SMCs (53) and the rat aorta in vivo, particularly in the
context of hypertension (443), but has not yet been clearly
demonstrated in humans.

D. Coupling Between Metabolic Activities
and Local Vasodilatation Within Tissues

The means of coupling the functional activities of regional
territories with their metabolic support (oxygen, glucose,
others) conveyed by the arterial circulation towards the
tissue capillaries are diverse. Servo-controlled signals are
generated by functional activities and diffused to local ves-
sels, including arterioles and capillaries. In this way, vaso-
dilator signaling reaches the vessel wall via its external or
internal layers, which may involve pericytes and capillary
endothelium as well as the SMCs themselves. In this archi-
tecture, the potential signaling of endothelial activity
spreads upstream via gap junctions between endothelial
cells, transmitting Ca2� signaling via Ca2�-dependent po-
tassium channels, endothelium-dependent hyperpolariza-
tion, and release of NO, C-type natriuretic peptide (499),
and prostacyclin (571). Since functional activities are di-
verse, the signals are also numerous and dependent on the

specificities of organ function. For instance, the tissue signal
may be directly linked to metabolic activity.

This is the case for striated muscle contraction, a process
that induces the highest changes in the circulation in the
body (exercise). Muscle contraction is highly ATP-con-
sumptive, generating adenosine, which can diffuse out of
the muscle cells into the tissue interstitium (375). Adenosine
signals to the arteriolar SMCs via the adenosine receptor,
coupled to the intracellular adenylate pathway that gener-
ates cAMP, a powerful inhibitor of calcium mobilization
within SMCs (372). In this context, blocking adenosine
catabolism by an adenosine deaminase antagonist (carbo/
chlorichromene) potentiates adenosine action and pro-
motes arteriolar relaxation. Carbochromene was used ex-
perimentally for many years to measure the coronary flow
reserve (difference in coronary flow before and after carbo-
chromene injection) (32).

Conversely, neurovascular coupling in the brain is probably
not directly dependent on neuronal energetic metabolism.
Numerous mediators have been suggested: NO produced
by calcium-dependent neuronal NO synthase activity, pros-
taglandin E2 produced by phospholipase activities, etc. It
was recently proposed that the coupling between neuronal
electrical activity and vasodilation is distally generated,
mainly involving pericyte relaxation (205) at the capillary
level and astrocyte activation (361). For instance, pericyte
degeneration leads to neurovascular uncoupling (274).

This distal neurovascular coupling allows the use of blood-
oxygen-level-dependent (BOLD) signaling in MRI to pre-
cisely localize neuronal activity (310). In this context, cap-
illaries dilate before arterioles, in which the secondary dila-
tion is potentially linked to NO release by the endothelium.
In fact, vasodilating signals spread retrogradely upstream
from the active distal tissues to the more proximal arteries
via interendothelial gap junctions and upstream propaga-
tion of depolarizing electrical charges, and possibly also
through endothelial-SMC gap junctions and connexins
(571) (FIGURE 4C). This phenomenon of retroconduction in
resistance arterioles and arteries was described 100 years
ago (285). The retroconducted (from downstream to up-
stream) vasodilator response to increased organ functions
in resistance arteries was demonstrated to be inherent to the
arterial wall, independent of both sympathetic and para-
sympathetic innervation and of hemodynamics (pressure
and flow) (476) but dependent on endothelial cell intercon-
nectivity (gap junction) (477).

E. Flow-Dependent Outward Vasodilator
Function in Conductance and Muscular
Arteries

As in fishes, the phasic flow in conductance and muscular
arteries induces frictional forces on the most luminal layer

JEAN-BAPTISTE MICHEL

1794 Physiol Rev • VOL 100 • OCTOBER 2020 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev by Sean Boyer (076.100.114.109) on August 24, 2020.



of the wall. This phasic shear (� � fct �V/r) maintains the
basic production of NO by the endothelium, which out-
wardly signals relaxation to subjacent SMCs by partly in-
hibiting the calcium mobilization produced by the inward
sympathetic tone (FIGURE 4C). The intensity of relaxation is
proportional to the biomechanical shear stress on the endo-
thelium. The mechanotransduction of shear on the endo-
thelial surface is ensured by mechanosensitive molecules
[reviewed in Ref. 33, including estrogen receptors in the
female (526, 527)]. In this molecular endothelial context,
loss of caveolin-NO synthase inhibitor interactions due to
mobilization of calcium-calmodulin (150) leads to more
NO release and endothelium-dependent local vasodilation
by the activation of soluble guanylate cyclase in subjacent
SMCs (20). If the high flow stimulus is sustained, the arte-
rial wall structurally outwardly remodel, increasing radius
(109). Similarly, the increasing flow in collateral vessels
related to ischemic territory induces collateral vessel growth
and outward remodeling (257, 294).

Conversely, the global pharmacological inhibition of endo-
thelial NO synthase by an arginine antagonist (NG-nitro-L-
arginine methyl ester, L-NAME) induces hypertension (20)
by reinforcing the vasoconstrictor tone in resistance arteries
(126, 222). In this context, the limit between flow-depen-
dent and depolarization-dependent vasodilations, which
are both endothelium dependent, is difficult to define pre-
cisely. For example, animals chronically intoxicated by L-
NAME develop monoplegic neurological deficits and die
from occlusive arteriolopathies in the CNS, rather than
from proximal artery diseases (52). This observation fits
well with a distal role of endothelium-dependent, NO-me-
diated vasodilation in distal arteries. This arteriolopathy is

diffuse and not limited to the brain but also affects the
kidney (587) and other organs.

F. Wall Tensile Biomechanical Stress
(FIGURE 7)

Although generated by frictional forces, the acquired arte-
rial pressure is a source of new tensile stress in addition to
frictional forces (shear stress). This stress corresponds to the
force exerted by pressure (Ep) within the arterial dimen-
sions. According to the law of Laplace, this radial tensile
force is tangential to the wall, proportional to the pressure
and the radius, and quantitatively distributed throughout
the wall thickness, including the SMCs, and qualitatively
supported mainly by the fibrillar ECM, which itself is syn-
thesized and matured by the SMCs. The tensile stress ap-
pears after birth (see above) and is also exerted longitudi-
nally. Moreover, the wall tensile stress is sinusoidal with a
systolic peak and an incomplete diastolic recoil. This phasic
sinusoidal form defines pressure pulsatility. In this context,
the biomechanical “fatigue” of the wall is proportional to
the stress peak intensity multiplied by the frequency of the
peak and the length of time. The peak of tensile stress and its
diastolic recoil mechanically and cyclically stretch the arte-
rial wall 3 � 109 times during a human lifetime of 80 yr.

The ECM constituents are biopolymers, which define the
major structural and functional characteristics of the arte-
rial wall, including the large-conductance arteries and the
muscular and resistance arteries. ECM is composed of a
network of different macrofibrillar proteins involving
mainly elastin and collagens, internally reinforced by lysine-
oxidase (LOX-1) covalent bridges (desmosine isodes-
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FIGURE 7. Mechanotransductions. The
mechanotransduction in smooth muscle cells
(SMCs) can be deciphered with respect to dual
extrinsic (hemodynamic dependent) and intrin-
sic (actomyosin activation) mechanisms. The
former, from outside to inside SMCs, deals
with the initial stretch of the extracellular ma-
trix, particularly elastic laminae in the large ar-
teries, which is transmitted via integrins, focal
adhesion kinase (FAK) and G protein-coupled
receptor (GPCR), to the cytoskeleton and nu-
clear envelope, able to (re)model the chromatin
architecture, changing the constitutive pattern
of gene expression. The latter, from inside to
outside, is initiated by the sliding of myosin on
actin leading to shortening of the cytoskeleton,
the shrinking of SMCs, and finally to the com-
paction of the wall tissue. The effects of this
duality on cell and tissue physiology are quite
different: stretch versus shortening and disten-
sion versus compaction.
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mosine) (131), rendering them insoluble. Elastin is com-
posed of a succession of hydrophobic domains, in which
entropic forces generate the recoil phenomenon, and cross-
linking domains, which confer solidity to the biopolymer.
Intermediate glycoproteins, such as fibronectin, fibrillin,
fibulin, microfibril associated glycoproteins (MAGPs), and
elastin microfibril interface located protein (EMILIN), and
proteoglycans are also members of the ECM (560). The
elastin fiber recoil plays the major role in distensibility,
compliance, and pulsatility of conductance arteries. Elastic
laminas are circumferentially layered between sheets of
SMCs. Proximal conductance arteries, particularly the
aorta and its main branches, are enriched in elastin, provid-
ing the wall with considerable compliance and elasticity to
allow functional dilation in systole and energy restitution in
diastole (Windkessel effect). This process has been analog-
ically modelized as a circuit involving the potential differ-
ence of in-parallel resistances and capacitances (573). In
conductance arteries, elastin is qualitatively involved
mainly in wall resistance to pressure-dependent dilation,
whereas collagen is implicated in resistance to rupture
(123).

Moreover, the ECM is able to retain different growth fac-
tors, such as transforming growth factor (TGF)-�, associ-
ated with latent binding protein (LTBP), which is anchored
to fibrillin and fibronectin. In this physiological context,
canonical TGF-� signaling in SMCs is adapted: in response
to functional ECM distension and/or to structural ECM
injury (proteolysis), TGF-� is released from its ECM stor-
age sites. TGF-� interacts with its receptors expressed on
SMC, inducing nuclear translocation of phosphorylated
Smad2 and Smad3, as Smad3 is mainly involved in ECM
production. Interesting enough, more than 10 years ago,
Bressan et al. (66) at the university of Padua demonstrated
that Emilin-1, an intermediary glycoprotein directly associ-
ated with elastin in the ECM, is able to limit TGF-� activi-
ties (impairment of pro-TGF-� maturation by furin conver-
tase) (599). Moreover, intriguingly, Emilin-1 suppression in
mice generated a higher blood pressure, which was rescued
by blocking TGF-� (599). This functional effect appears to
be related to enhancement of the myogenic tone, through
transactivation of epidermal growth factor signaling (86).
These biological data were confirmed at a phenotype level
(514) and genetic risk (487) in human. Of note, the family
of bone morphogenic protein (a member of TGF-� family)
is directly involved in pulmonary hypertension (187).

TGF-� also increases the expression of reparative genes as
LOX-1, and antiproteases (186). Other growth factors are
retained by glycosaminoglycans (heparinoids) (91). SMCs
synthesize ECM proteins but are also able to synthesize
some serine proteases [tissue-type plasminogen activator
(t-PA), urokinase-type plasminogen activator (u-PA), and
their inhibitors (tissue-serpins, Ref. 61)] and, constitutively,

some matrix metalloproteinases (MMPs) such as pro-
MMP2 (42) and their tissue inhibitors (TIMPs) (164).

Intermediate glycoproteins, such as fibronectin, fibrillin,
and proteoglycans, etc., are also members of the ECM.
Numerous proteins of the ECM scaffolding, particularly
fibronectin, vitronectin, and fibrin for healing, present argi-
nine-glycine-aspartate (R-G-D) motifs in their protein se-
quence, which are binding sites for integrins (34). In con-
trast to elastin fibrils which cannot be directly used as an
adhesive substrate for SMC, due to their high degree of
hydrophobicity, collagen can act as an adhesive substrate
for numerous types of cells (epithelial cells, endothelial
cells, etc. (see Ref. 442 for extended review). The adhesive
sequence on collagen is a glycine-phenylalanine-hydroxypro-
line-glycine-glutamate-arginine (CFOGER) motif (276). In-
tegrins are heterodimeric, full transmembrane proteins con-
taining noncovalently associated � and � chains (241). In-
tegrins are heterodimeric, full transmembrane proteins
containing noncovalently associated � and � chains (241).
The �-subunit is directly involved in ligand specificity,
whereas the �-subunit supports the connection with the
cytoskeleton and is involved in mechanotransduction sig-
nals. Proteolytic impairment of these adhesive interactions
between ECM and integrins causes cell detachment and
apoptosis (338), a biological process named anoikis (345),
which may be involved in the disappearance of SMCs.

In addition to tensile stress generated by ECM stretching
and recoil, internal tensegrity and actomyosin sliding also
generate an internal mechanical stress, not only shortening
the SMC itself, but also the ECM, leading to compaction
of the full arterial wall (FIGURE 7). Conversely, relaxation of
the SMC creates decompaction of the arterial tissue. Com-
paction decreases the water content and the wall permea-
bility, whereas decompaction has the opposite effect, poten-
tially promoting delamination in the media of conductance
arteries (see sect. VB).

G. SMC Mechanotransduction

Throughout life, SMCs support a basic tonic stretching
(mean arterial tension) that sinusoidally fluctuates (pulsa-
tility) proportionally to the variation in pressure and dimen-
sion (Laplace law). As described above, peptidic sequences
in the ECM fibrillar components and integrins are the main
actors of cell adhesion and therefore of mechanotransduc-
tion from the ECM to SMCs. Focal adhesions, correspond-
ing to the clustering of integrins in some specific areas of the
SMC membranes, are mainly responsible for the out-in
transduction of biomechanical signals (76). Focal adhesions
provide the link between integrins and the intracellular cy-
toskeleton, composed mainly of actin and actomyosin com-
plexes. Focal adhesions are enriched in actinin, which serves
to anchor actin to the integrin intracellular domain; vincu-
lin, which coaligns with fibronectin fibrils on the cell surface
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(77); talin, which is involved in integrin activation, promot-
ing their interactions with the ECM (34); focal adhesion
kinase (FAK; targeting Jnk, Erk, and phosphatidylinositol
3-kinase pathways) and some other proteins (76). Integrin
clustering and ECM engagement triggers tyrosine phos-
phorylation in multiple intracellular targets involving this
adhesion pathway in numerous cell processes, including
adherent cell survival, growth and proliferation, differenti-
ation and phenotypic switch, etc. In parallel, RhoA, a small
GTPase associated with focal adhesions, regulates cytoskel-
etal structure and activity, actomyosin stress fiber forma-
tion (internal tensile stress), and actomyosin sliding in SMC
contraction (321). It is noteworthy the myogenic response
of SMCs to a biomechanical stimulus is 100 times faster
(300 ms) than a similar response to a biochemical ligand/
receptor interaction (�30 s) (388, 434).

In addition to the integrin pathway, G protein-coupled re-
ceptors (GPCRs) are also mechanosensitive pathways inde-
pendent of the canonical ligand-receptor pathways. In this
context the angiotensin II type 1 (AT1R) has been the most
studied (472). This effect appears to be mediated by �-ar-
restin engagement in AT1R via the inhibitory G protein
(G�i) (562). These data can be compared with some muta-
tions within the seven transmembrane domains, leading to
constitutive activation of the AT1R (429). When the recep-
tor is molecularly constrained, it is inactive. The pharma-
cological agonist, gain-of-function mutations, and poten-
tially the membrane stretching, all lead to AT1R activation
by relaxing conformation in the transmembrane domains
and internalization by binding to �-arrestin (429).

Inside the cells, the cytoskeleton is the main cytosolic com-
ponent generating the internal tensile stress that supports
stretching (stress fiber) (78). The cytoskeleton is an assem-
bly of biopolymers: actin and myosin forming actomyosin
filaments and stress fibers, microtubules and intermediate
filaments [vimentin, desmin (523), filamin (445), and induc-
ible nestin (81)] forming the scaffolding of adherent cells.
Nuclear lamins are also intermediate filaments, subjacent to
the inner nuclear membrane, forming with it the nuclear
envelope and the scaffolding for nuclear shape and struc-
ture and participating in nuclear function (517).

1. Actin

Polymerization of globular monomeric (G-) to fibrillar
polymeric (F-) actin and subsequent depolymerization plays
a major role in numerous processes involved in morpholog-
ical and functional SMC plasticity (cytokinesis, SMC mi-
gration, endocytosis and phagocytosis, adhesion and con-
traction, etc.) (461). Actin is an ancient, highly evolution-
arily conserved protein polymer that is present in
prokaryotes, a fact that explains its presence not only in the
cytoplasm but also in the nucleus (30). In the nucleus, G-
actin is associated with RNA polymerase and is involved in
transcription initiation, elongation, and inhibition of serum

responsive factor (SRF) activation (30). Nuclear �-actin
also interacts with HAT (400) and histone deacetylase
(HDAC) (481) and globally plays a major role in chromatin
organization and gene expression (585). F-actin is also pres-
ent in the nucleus as highly flexible short filaments (30). In
humans, there are six actin isoforms including �- (Acta2,
SMC), �-skeletal (Acta1), and �-cardiac (Actc1) striated
muscle actins (548). Acta2 is predominant in SMCs, but
�-actin is also present, participating in the cytoskeletal ar-
chitecture, mechanotransduction, vasomotricity (actomyo-
sin sliding), and SMC plasticity. Importantly, SMCs must
form podosomes, predominantly involving actin, in re-
sponse to numerous physiological or pathological cues
[spreading, increased pressure, stretching, response to
growth factors (200)], finally promoting localized pericel-
lular proteolysis and motility (73) leading to inward migra-
tion of medial SMCs and intimal proliferation (271). Other
components of the cytoskeleton are involved in podosome
formation, including caldesmon (140, 199) and microtu-
bules (614). Of note, podosome formation is associated
with actin isoform reorganization, partial loss of F-actin,
and podosome relocalization of Acta2 and �-actin in re-
sponse to phorbol dibutyrate, whereas stimulus cessation
reverses the phenomenon, reestablishing actomyosin stress
fibers (69). These molecular switches in actin balance cor-
respond to associated phenotypic switching between con-
tractile and migratory functions, proliferative and synthetic
phenotypes of SMCs, defining at least in part their plastic-
ity. In parallel, SMCs have also acquired a SM-specific my-
osin isoform (MYH11) (180). Among up to 35 classes of
myosins, the smooth muscle myosin isoform is mechani-
cally characterized by a tonic action rather than a fast one as
for cardiac and striated muscle. The biochemical interac-
tions are also quite different (caldesmon, calponin, trans-
gellin�) from those of sarcomeric myosin. Lastly, the regu-
lation of contraction is different: in cardiac muscle, Ca2�

directly bind troponin in the actomyosin apparatus,
whereas the Ca2�- calmodulin complex activates kinase
and targets phosphorylation of regulating proteins. There-
fore, the contraction/relaxation consumption of ATP is
high in SMC (51, 515).

2. Biomechanical modeling

Different models have been proposed for integrating bio-
mechanics in cell biology. The first was the tensegrity model
proposed by Ingber (244) as an intracellular lattice archi-
tecture of compressive (struts) and tensile elements (cables).
In this model, tensile cables are mainly represented by ac-
tomyosin, whereas compressive struts are represented by
microtubules (246). Intermediate filaments are more elastic,
undergoing entropic conformational changes depending on
the tensile stress level. This elasticity is mainly recruited
when the cell is highly stretched, and the intermediate fila-
ments are extended. The intermediate filaments directly
support the structure and function of the cell membranes.
The main thermodynamic point is that these intracellular
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elements are basically prestressed, consuming ATP and
GTP as their energy source (oxidative metabolism). In this
context, ECM rigidity increases internal tensegrity by resist-
ing the cell’s internal tensile force.

The second model is the soft glass rheology model (463),
which is now recognized as a relevant dynamic model for
mechanotransduction within the target cells. Depending on
energy cost, the metastable intracellular cytoskeleton can
oscillate between a solid, static network and a more fluid
rheological behavior (141, 541). This paradigm is relevant
for arterial SMCs, which are permanently exposed to cyclic
stretching and release, and important phenotypic changes.

3. Myogenic response

The energy-consumptive maintenance of tensile force of the
internal cytoskeleton and its dynamics are constitutively
involved in all SMC functions: adhesion to ECM, tonic
contraction, cell shape and deformation, migration and
proliferation, differentiation, endo/phagocytosis, and phe-
notypic shifts (291). In the hemodynamic context, one of
the main effects of cytoskeletal tensile stress on SMC phys-
iology is the opening of membrane ion channels, inducing
Ca2� flux entry and myogenic tone in small arteries. For
instance, it was recently shown that filamin A (445), an
intermediate filament bound to actin, is a necessary molec-
ular intermediary between change in pressure, stress-depen-
dent Piezo1 calcium channel, and the myogenic response
(452).

As for cell-to-cell vasomotor signal spreading via gap junc-
tions in resistance arteries, mechanotransduction also in-
volves cell-to-cell communication in the walls of resistance
arteries. Intercellular adherens and tight junctions are
mainly assured by N-cadherin (512). Cadherins possess a
large extracellular part with five repeated (EC1 to 5) do-
mains. EC1 and 2 trans-bind N-cadherin EC1 of the adja-
cent cell and cis-interact with nearby cadherins. The intra-
cellular domain binds catenins and, indirectly, vinculin and
cytoskeletal F-actin. N-cadherin is directly involved in the
myogenic response to mechanical stimuli and in the vaso-
motor tone in response to pharmacological agonists (511)
in resistance arteries and arterioles.

Therefore, we can conclude that adhesion of SMCs to
ECM, integrin clustering, and the cytoskeleton all play pre-
dominant roles in mechanotransduction in ECM-rich con-
ductance arteries, whereas collective SMCs, tight junctions,
cadherin, and GPCR play a predominant role in resistance
arteries and myogenic tone. Moreover, the two adhesion
signaling pathways, ECM and intercellular adhesions, exert
negative feedback on each other (79). This crosstalk be-
tween the two adhesion systems is also potentially impor-
tant for understanding mechanotransduction in walls of
different arterial compartments (conductance vs. resis-
tance) (328, 340). In contrast, the myogenic responses in

large elastic arteries are less documented but are potential
determinants of aneurysmal risk and delamination leading
to dissections (240).

In this cellular and molecular context, the involvement of
mitochondrial bioenergetic and cytosolic NADPH oxidase
(NOX) activities regulating the basal redox state of the cell,
or leading to oxidative stress, are long-term determinants of
SMC functions, survival, and pathology. Mitochondrial dy-
namics involving mitochondrial fusion and fission are di-
rectly involved in cell energetics (342). Fusion produces a
connected mitochondrial network that participates in the
maintenance of SMC homeostasis (low level of O2

� and
H2O2) (132). Mitofusion depends on mitofusin 2 present
on the external membrane of mitochondria, but mitofusin
overexpression also activates SMC apoptosis (196). In con-
trast, the fragmentation of mitochondria (mitofission) in
response to stress enhances mitophagy and mitochondrial
renewal. Mitofission is dependent on GTPase activities, as-
sociated with a high level of ROS release and a shift from
glycolysis to fatty acid oxidation. Mitofission is necessary
for SMC migration and proliferation (564).

In parallel, submembranous NOX, which promotes the re-
duction of O2 to superoxide anion (NADPH ¡ NADP� �
H� � O2

�), is constitutively active in SMCs. Its physiologi-
cal role is to regenerate NADP (electron acceptor) as a co-
enzyme of the cytosolic pentose phosphate pathway, which
is directly involved in cholesterol and fatty acid biosynthe-
sis, nucleotide and DNA synthesis, and reduction in gluta-
thione. NADP also participates in cytosolic glycolysis and
calcium mobilization. NAD can be converted to NADP and
back to NAD via kinase (314) and phosphatase activities. In
this metabolic context, NOX permanently participates in
the cytoplasmic redox state and responds to mechanotrans-
duction, allowing the biosynthesis of cell component, and
cell adaptation to mechanical forces (63). As seen above,
SMC tensegrity, contraction/relaxation, migratory capac-
ity, and phagocytic ability all involve actin dynamics, regu-
lated by the redox state of the cell (468).

H. Nuclear Mechanotransduction

The impacts of tensile mechanotransduction in the arterial
wall are not limited to the ECM, the SMC cytoskeleton, and
GPCR but also involve nuclear structure and function. With
regard to the other cell compartments, depending on the
microenvironment, the nucleus is a target for structural and
functional reshaping (360). Inner and outer membranes
(nuclear envelop) fenestrated by nuclear pores with encap-
sulating lamins (intermediary filaments) enclose the nuclear
compartment. Chromatin (DNA�histones) can be tran-
scription-silenced, tightly packaged in heterochromatin,
and linked to lamin, whereas transcriptionally active chro-
matin is loosely compacted in euchromatin in the nucleolus.
The bidirectional shift between hetero- and euchromatin is
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dependent on mechanotransduction, regulating the epige-
netic control of gene expression (223). In this context, nu-
clear G-actin, a transcription cofactor, decreases because of
its consumption by nuclear F-actin polymerization, leading
to attenuation of transcription and trimethylation of his-
tone H3 in stem cells (299). Chromatin is also a direct
rheological target, structurally able to move from compac-
tion to elongation (opening) and to resist stretching by plas-
ticity (248).

The first observations suggesting that there are mechanical
relations between ECM, cells, and cell nuclei were reported
in the 1980s and 1990s (207, 245). The nuclear envelope is
mechanically coupled to cell stretching via the molecular
linkers of the nucleoskeleton to the cytoskeleton (LINC)
(250, 565). It has been shown that the mechanical environ-
ment of vascular SMCs impacts the state of their chromatin,
thereby controlling vascular gene expression and functions
(97). This mechanical nuclear impact depends on the ex-
pression, localization, and phosphorylation of the LINC
molecular components (Nesprins, Sun proteins, p-Emerin,
lamins). F-actin clustering in a perinuclear ring and actin-
myosin-emerin complex formation are essential in the nu-
clear transmission of the forces of extrinsic stretching (299).
In response to stretching, actin and actomyosin organize an
apical perinuclear actin cable connected to basal focal ad-
hesions at the periphery of the cell, increasing the perinu-
clear tensegrity, forming a cap surrounding the nucleus,
limiting the nuclear flattening and reshaping (272). Both
myosin activation in the cytoskeleton, and lamin interac-
tions (LINC) in the nuclear envelope, are necessary to en-
sure this nuclear morphological protection in response to
cell strain and deformation.

In this context, the Hippo pathway (MST1/2 kinases,
SAV1, MOB1, and LATS1/2 kinases) (316), YAP, and TAZ
paralog genes and proteins (413) function as a universal
mechanotransduction shuttle between the cytoplasm (phos-
phorylation and inactivation), inducing cytoplasmic reten-
tion and degradation regulated by the actin cytoskeleton
(479), and the nucleus. After nuclear translocation, YAP
and TAZ serve as transcriptional coregulators, binding en-
hancer elements forming complexes with TEADs, a family
of DNA-binding transcription factors that cannot induce
target gene transcription on their own but depend on cofac-
tors (602). A paucity of adhesion, high cell confluency, and
a soft adhesion matrix limit YAP and TAZ in the cyto-
plasm. Conversely, cell contact, strong adhesion to a stiff
matrix, and cell stretching and velocity vector dispersion
induce YAP and TAZ nuclear translocation and activation
of the expression of target genes. Rho GTPases are also
involved in this pathway.

Cajal bodies are subnuclear structures usually identified by
the presence of coiled threads and a predominant coilin
protein (374). Interactions between coilin, survival mo-

toneuron (SMN) proteins, and small ribonucleoproteins
form complexes directly involved in gene transcriptional
regulation, splicing, telomerase regeneration, and cellular
trafficking (219). In a recent study, Poh et al. (435) demon-
strated that mechanical forces applied at a cellular level (in
association with FRET technology) dissociate the coilin/
SMN complex, and this effect is inhibited by F-actin disrup-
tion, myosin II antagonism, and lamin A/C suppression.
Therefore, these results demonstrate that mechanotrans-
duction can regulate the spliceosomal machinery (shift in
isoforms) and, potentially, telomerase activities (220).

Mechanotransduction involving integrins and/or cadherin
and GPCR, maintenance of cytoskeletal and nucleoskeletal
architecture, and functional responses, including down-
stream signaling molecular pathways (194, 444)), is energy
consumptive. In this context, AMP-activated serine/threo-
nine kinase (AMPK) is a key regulator of energy metabolism
(40), including GTP and ATP mitochondrial production
and consumption (myosin, actin stress fibers), in associa-
tion with glucose entry and cytosolic metabolism in SMCs
as a second energy source (468).

IV. EVOLUTIVE AND DYNAMIC
TELEONOMY OF THE CIRCULATION

Intuitively, the teleonomy of evolution in the animal king-
dom, including humans, is the development of specific or-
gan functions, interrelated with a complementary and ad-
ditive rationalization at the level of the whole organism.
This process resembles Taylorism (528), which, applied to
living organisms, includes the dividing up and the hierarchy
of structures, functions, and their controls. In this context,
the dynamic teleonomy of the evolution of animal species
appears as a fantastic biological effort to accommodate
and/or to escape from, at least partly, the universal compel-
ling natural laws such as, for instance, gravitational forces
in terrestrial physics (49, 457) or thermodynamic laws in
chemistry (417). This can be achieved only by introducing
servo-controlled fueling (energy, metabolic supports) in the
biological dynamics of evolution. This servo-controlled fu-
eling is not only necessary for the activation of biological
processes but also for the stable maintenance of these basic
processes with controlled feedback (for instance, in SMCs,
basic internal tension in physiology and dynamic activation
of actomyosin sliding, leading to active contraction and
active relaxation feedback).

The dynamic teleonomy of the evolving circulatory sys-
tem, including genetic selection and phenotypic adapta-
tion, involving peripheral resistance to flow and the ac-
quisition of high blood pressure in the peripheral arterial
system, is objectively to optimize specific metabolic sup-
port for each tissue and organ territory, driven by local-
ized and function-specific active vasodilation. As de-
scribed above, active vasodilation can only be achieved
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by the localized release of basal arterial tone (peripheral
resistances, frictional forces) in response to localized
functional activities and to their specific metabolic de-
mands. Like active peripheral SMC tone, active vasodi-
lation is also energy consumptive (for instance, G-kinase
activation and GTP consumption).

If one agrees with this paradigm, the different evolutive
steps of the circulation become explicit:

• diverse archaic hearts as beating muscular tubes propel
interstitial flow in open circulatory systems of inverte-
brates (502);

• “in-series” closed circulatory system in fish involving
heart, gills, and periphery (260);

• evolutive heart septation leading to an “in-parallel”
divided cardiopulmonary system and the progressive
elevation of arterial pressure in tetrapods, amphibians,
reptiles, and finally birds and mammals (145);

• the concomitant progressive apparition of numerous
branch points in the conductance arteries, distributing
blood-borne metabolic support to the functional terri-
tories;

• the generation of arterial tone in the resistance arteries,
offering the ability to locally relax and dilate;

• and concomitantly the maintenance of diffuse periph-
eral frictional forces defining high arterial pressure in
interaction with the ability of the heart to adapt to high
afterload in mammals.

This paradigm covers all the aspects of both the structure
and function of arteries, engages bidirectional crosstalk be-
tween blood hemodynamics (the content) and the arterial
wall (the container), and finally engages arterial SMC plas-
ticity as a survival necessity, actively participating in dy-
namic arterial structure and function. However, it is also
the most common denominator of cardiovascular patholo-
gies (the energetic price to pay).

V. PHYSIOLOGICAL FOOTPRINTS

Compared with fishes, in which flow is highly predominant
without important pressure, arterial hemodynamics in
adult mammals involve both flow and pressure, with per-
manent systemic or localized energy transfer between the
two and dissipation of both

A. Energy Conservation, Transfer, and
Dissipation

The blood is a viscous fluid, with predominant mechanical
energy transfer and small dissipation in conductance arter-
ies, whereas mechanical energy is mainly dissipated through
frictional forces in distal resistance arteries leading to low
velocity and pressure in the capillaries (FIGURE 8).

B. Outward Radial Conductance of Soluble
Mediators (FIGURE 9)

One of the most important interactions between hemody-
namics and the arterial wall is the advective outward hy-
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FIGURE 8. Mechanical energetic compartments. Mechanical en-
ergetics in the arterial system are complex, involving conservation,
transfer, dissipation, and heat production in the different sectors of
the arterial system, including the left ventricle. The mechanical effi-
ciency of the arterial circulation is never 100% and depends on
changes in arterial wall geometry (tapering and bifurcations, steno-
sis and dilation) and hemodynamics (pulsatility of flow and pressure
versus cushioning and damping). The left ventricular ejection func-
tion is essentially due to energy transfer, and the conductance
arteries are the sites of conservation, transfer, and low dissipation.
The resistance arteries are predominantly the site of dissipation and
cushioning pulsatility. The capillaries and veins are capacitance sites
of low mechanical energy with continuous flow, low velocity and low
pressure (dissipation pound), with pressure-dependent blood stasis
and wall distension (256). The pulmonary circulation, not repre-
sented in the graph, is a site of pulsatile flow (Ek), low pressure (low
resistance), and relative capacitance due to change in pressure
(passive wall distension, and capillary dissipation as water leaks
when pressure increases).
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draulic conductance from blood across the wall, a phenom-
enon defined by the arterial pressure gradient and wall per-
meability (88). This phenomenon obeys Newton’s law of
motion (published in 1687 in Philosophiæ Naturalis Prin-
cipia Mathematica) and Bernoulli’s principle of fluid dy-
namics (published in 1738 in Hydrodynamica): the pressure
gradient force determines unidirectional hydraulic conduc-
tance from highly pressurized blood (120–80 mmHg) to
the adventitial interstitium of low pressure (�15 mmHg).
This radial conductance is the main determinant of the uni-
directional mass transport through the arterial wall (out-
ward convection). In contrast, diffusion is the main deter-
minant of transmural transport in fish, in the mammalian
fetus, and in venous and capillary systems after birth. In this
arterial paradigm, the soluble components present in
plasma or generated at the blood/wall interface or in the
intima or media, outwardly percolate through the wall lay-
ers, including first the endothelial barrier, then the media,
and finally the adventitia, in which the transported molec-
ular components can be recycled by the adventitial vasa
vasorum and lymphatics by passage into the general circu-
lation. Flow and shear stress also directly impact mass
transport through the wall: high shear rate limits mass
transport by a washing effect, whereas low shear and oscil-
latory flow promote the outward convection of plasma
components (87).

The first description of this percolation of plasma compo-
nents through the arterial wall was made by Nikolai
Anitschkow more than 100 years ago (15), who described
the pressure-dependent exfiltration of plasma lipid trans-
porters towards and retention within the arterial wall in the
context of atherosclerosis (see below). Wilens confirmed
this paradigm by showing that this radial mass transport is
specific of the arterial part of the circulation (absent in veins
and low in the pulmonary artery), thus depending on arte-

rial pressure and wall permeability (576, 578). Convection
of the soluble and microparticulate components of the
blood through the wall reflects the hemodynamic energy
dissipation within the wall, systemically defined by arterial
blood pressure, but locally modified by specific hemody-
namics and structure and function of the wall. As compared
with the longitudinal flow (5 L/min), the convected trans-
mural flow is extremely low but constantly exists through-
out the life, and can vary in relation to arterial wall hetero-
geneities, and their impact on vasomotor functions and ge-
ometries (386). These data were expanded to tracers other
than lipids, particularly using radioactive plasma albumin
(89). This approach allowed to decipher the circulating and
wall parameters involved in radial transport through the
wall (88).

This radial transport is potentially involved in the physio-
logical absence of any microcirculatory vessels within the
medial tissue because of the radial transport from plasma of
ionized oxygen, glucose [involving the glucose transporter
10 (GLUT10) at the SMC membrane (519)], and other
substances. Outward convection is physiologically suffi-
cient to support the metabolic needs of the media, and there
is no evolutive necessity for the presence of intramural cap-
illaries except in the external part of the thoracic aorta
(583). Therefore, radial advective transport becomes a sur-
vival necessity for the arterial media in mammals in re-
sponse to metabolic needs generated by tensegrity and con-
tractile tone of SMCs. In contrast, diffusion is sufficient for
the not yet pressurized arterial wall during fetal life and in
the venous and pulmonary artery walls after birth. Thus any
postnatal inward intrusion of vessels, due to neoangiogen-
esis, from the adventitia (vasa vasorum) to the media and
the intima within the arterial wall is not physiological but is
associated with arterial pathology.
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FIGURE 9. Solute convection through the wall. The pressure gradient (100 mmHg) between the arterial
lumen and the adventitial interstitial pressure promotes a radial advective conductance of plasma solutes
across the arterial wall. This aqueous conductance is small as compared with the longitudinal conductance but
conveys almost all the plasma-soluble molecules and microparticles present in the plasma. During this outward
transport, the convected molecules can interact or not with the cellular and matrix wall components.
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In the same way, outwardly convected serum (S) compo-
nents have been identified as trophic factors for cultured
SMCs (459) via SRF and serum responsive element (SRE)
associated with myocardin. Since serum is the supernatant
obtained after blood clotting, it includes numerous mole-
cules such as growth factors derived from circulating cells,
mainly platelets, whereas the most aggressive proteolytic
enzymes and oxidases are blocked by their corresponding
plasma inhibitors. Plasma alone is certainly less rich in
trophic factors than serum but nevertheless does contain
them. Therefore, permanent advective transport of circulat-
ing plasma growth factors through the wall participates in
maintaining physiological arterial wall trophicity and func-
tion.

Generalized or localized outward mass transport across the
arterial wall is dependent on both general and local hemo-
dynamic parameters involving pressure, pulsatility, wall
distension, shear stresses, physicochemical characteristics
of the conveyed proteins (molecular weight, electrical
charge, hydrophilic or hydrophobic properties), and local
wall porosity. Endothelial integrity is the first mechanical
barrier to outward mass transport through the wall due to
tight and adherent junctions between endothelial cells (41,
169, 265, 529). In the same way, relaxation and contraction
of SMCs, corresponding to both compaction and dilation of
the wall tissue, are important determinants of permeability
and outward mass transport (SMC relaxation increases me-
dial permeability, whereas SMC contraction decreases it)
(88, 100, 341). Other structural components of the wall are
also important, such as integrity of the elastic network
(439). Laminar flow limits radial mass transport (87) via a
mechanical washing effect, and conversely, endothelial NO
synthesis promotes subjacent SMC relaxation and poten-
tially increases medial permeability. Inversely, oscillatory
flow, transverse wall shear stress (424), velocity vector dis-
persion due to changes in arterial wall geometry (bifurca-
tions), fixed points in vortices (23), flow impingement and
the dissipation of energy within the arterial wall, all locally
promote mass transport.

In addition to its role as a mechanical barrier, the endothe-
lium also plays a role as a biochemical barrier, in particular
for small peptides, due to its enrichment in peptidases such
as angiotensin converting enzyme (ACE) or neutral endo-
peptidase (NEP; neprilysin, able to degrade natriuretic pep-
tides, NPs) (496), endothelin converting enzyme (ECE),
aminopeptidases, etc. but also peptide receptors such as the
AT1 receptor to angiotensin II (439), the ETA receptor to
endothelin (387), or particulate guanylate cyclase and clear-
ance receptors to NPs also play a role (447). Due to these
direct interactions between circulating small peptides and
lytic and/or clearance capacities expressed by endothelial
cells, the probability of peptide passage towards the mural
SMCs through the endothelium is low. For instance, several
years ago, using tissue, plasma, and urine cGMP as in vivo

markers of guanylate cyclase activities involving both par-
ticulate guanylate cyclase (sensitive NPs) and/or soluble
guanylate cyclase (sensitive to NO), we demonstrated that
high levels of circulating NP directly impact the production
of cGMP by the endothelium and its release into plasma and
urine but have no effect on cGMP concentrations in the
arterial wall (18, 19). In contrast, NO and soluble guanylate
cyclase directly impact cGMP in the medial SMCs (20).
These data suggest that the ability of NPs to cross the en-
dothelial barrier is limited by biochemical interactions (pro-
teolysis and clearance).

In this context, the next question is what happens to the
plasma solute components when they are outwardly con-
veyed across the wall? All soluble plasma proteins and
macromolecules percolate through the media at a rate
dependent on their physicochemical properties. Some of
them are neutral and potentially do not interact with the
medial components [albumin (90), transthyretin] and can
be used for measuring wall permeability. Some are
trophic factors, able to cause SMC proliferation at spe-
cific localizations where the mass transport is particu-
larly high in relation to hemodynamic load and/or wall
permeability, such as bifurcations or injured segments.
Other molecules able to interact with the cell or matrix
wall components may be retained within the matrix or
activated on SMC membranes. For instance, circulating
MMP-7 (matrilysin) and MMP-3 (stromelysin) are re-
tained in the alcianophilic ECM mucoid substance (57),
whereas plasminogen can be converted into plasmin on
the SMC membrane (338) (see sect. VID).

The unmodified or transformed products generated by the
blood/wall interactions or released by SMC responses are
logically also outwardly convected to the adventitia, where
they may initiate new signaling that is able to greatly modify
adventitial structure and function, involving inward neoan-
giogenesis, an immune adaptive response, or fibrosis (see
below pathological examples).

In addition to the canonical functions of matrix synthesis
and contraction, medial SMCs phylogenetically acquire a
high degree of plasticity, developing or reactivating several
functions in response to unidirectional radial convection of
plasma components, such as endocytosis, phagocytosis, mi-
gration and proliferation, acquisition of an osteoblastic
phenotype, organization of adventitia, and others. Radial
mass transport is a physiological parameter, which perma-
nently maintains SMC plasticity, in part by epigenetic im-
pact in relation to mechanotransduction. This phenomenon
becomes crucial in arterial pathologies. By their ability to
endocytose transmurally convected elements via scavenger
receptors and to phagocytose cellular elements (het-
erophagy), SMCs acquire clearance functions in the medial
layer of the arterial wall (see below).
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C. Inward Functional and Structural Cellular
Conductance

As described above, the outward convection is unidirec-
tional due to the dissipation of the hemodynamic energy
(flow and pressure) within the arterial wall. Thus there is no
reverse interstitial fluidic conductance from the adventitia
to the lumen. All signaling molecules originating from the
adventitia are inwardly transported via the SMC network,
passing from cell to cell via the intercellular connexins. For
instance, these intercellular communications are the princi-
ple means of diffusing the contractile tone signaling gener-
ated at the adventitia/media interface by the sympathetic/
SMC synapses and inwardly diffusing through the wall
SMCs (see sect. IIIA, FIGURE 4C).

In the same way, living vascular SMCs and endothelial cells
(ECs) can migrate inwardly (and proliferate) in response to
growth factors generated inside and outwardly convected,
as an example of living beings circumventing the general
mechanical laws by energy fueling (metabolic substrate
consumption) (FIGURE 10). This ability of medial SMCs to
inwardly migrate and proliferate in the intima in response
to platelet-induced or mechanically induced luminal injury
was described 40 yr ago (458). Similarly, the ability of ad-
ventitial ECs to sprout and penetrate the media as inward
neoangiogenesis in response to specific growth factors has
been more recently characterized, particularly in References
151 and 378 (see below), but not limited to, the context of
atheroma (268).

D. Collision of Blood Particles with the Wall

Any change in wall geometry causes mechanical impingement
or stagnation of blood flow, inducing collision of circulating
cells with the arterial wall or between themselves. In laminar
conditions of flow, the particulate components of blood re-
main in the central axis of flow, whereas the peripheral posi-
tion of plasma favors its interface with the wall. In contrast,
any changes in geometry induce loss of laminarity, micro-
scopic dispersion and heterogeneity of particle velocity vec-
tors, and an increase in internal energy (entropy) of the partic-
ulate part of the blood, facilitating collision with the wall.
Collisions of blood cells with the wall are mainly due to the
angulation of bifurcations or the presence of luminal narrow-
ing but also depend on the hemorheology of the circulating
cells (FIGURE 10). Collision of blood cells between themselves
is mainly due to functional or structural luminal dilations (an-
eurysms, poststenotic dilation, anatomical sinuses, etc.) asso-
ciated with blood stagnation and vortices.

RBCs and platelets are the most abundant circulating cells and
therefore represent the main blood particulate elements collid-
ing with the arterial wall in regions where biomechanical stress
drives the formation of intimal tears and of small intimal he-
matomas. In a laminar rheological environment, since RBCs
concentrate in the core of the stream, platelets are expelled
towards the periphery, close to the endothelium (1, 174, 543).
RBCs (8 �m diameter) are highly deformable, allowing them
to penetrate very small channels, such as the 0.5-�m-wide
endothelial slits in the spleen, and adapt their form to the
circulating shear rate (550). This property is lost when the flow
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FIGURE 10. Cellular conductance. Out-
ward convection is unidirectional from inside
to outside the arterial wall. Conversely, inter-
stitial retrodiffusion of solutes from the ad-
ventitia to the inner wall does not occur. The
arterial wall usually responds to the outward
interstitial mass transport by cellular con-
ductance, involving inward migration and
proliferation of smooth muscle cells from
media to intima (repair) and endothelial cell
sprouting from the adventitia towards the
media forming neo-angiogenesis. Due to its
connective tissue nature, the adventitia is a
capillary- and postcapillary venule-rich struc-
ture and a privileged site for leukocyte diape-
desis, including lymphocytes able to promote
tertiary lymphocyte organs able to locally ma-
ture adaptive immunity.
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becomes nonlaminar. Collision of RBCs with the wall is po-
tentially a major cause of oxidation since RBCs release hemo-
globin and redox-active ferrous (Fe2�) iron, the main catalyzer
of oxidation (Fenton reaction). Collision of platelets with the
vessel wall in areas of de-endothelialization or loosened endo-
thelial junctions leads to interactions between platelets and the
subendothelial matrix (600). These interactions can cause
platelet activation and aggregation, which induce the release
of numerous mediators contained in platelet granules, includ-
ing growth factors (PDGF, TGF-�), antiproteases (61),
chemokines, and immunomodulatory factors. In particular,
activated and aggregated platelets are sites of interaction with
neutrophils. Thus, in addition to being sources of cholesterol
via their cholesterol-rich membrane, RBCs and platelets pro-
mote oxidation and remodeling within the arterial wall. In
contrast, the probability of collision of leukocytes with the
wall is less frequent because there are less leukocytes in blood
(100-fold less numerous than platelets and 1,000-fold less
than RBCs). In particular, the rolling of leukocytes on the
endothelium of conductance arteries is limited by the shear
stress, and adhesion and diapedesis within tissues are highly
specific to the microcirculation, mainly the postcapillary
venules, with a specific endothelial phenotype (high endothe-
lial venules, HEV), which is only physiologically present in the
adventitia of arteries (489) and in inward neoangiogenesis in
pathologies.

E. Epigenetic Plasticity of Vascular SMCs
(FIGURE 11)

Epigenetic regulation involves a set of molecular mechanisms
that control the expression of genes in a cell and in tissues,

leading to particularities specifically adapted to functions. Epi-
genetics control a large part of the development (450) from
undifferentiated initial stem cells to differentiated cells and
tissue specification in embryonic, fetal life, and during postna-
tal growth (13). Epigenetic memory involves the inheritances
of acquired phenotypic traits via mitosis, which transmits the
chromatin, containing DNA sequences together with their
own histone enzymatic and electrostatic microenvironment
which has undergone epigenetic modifications. The orchestra-
tion of gene expression in a tissue-, cell-, and time-dependent
manner is the fact of invariant chromatin domains which spa-
tially foster enhancers/promoters interaction (topologically as-
sociating domains, TAD) through DNA loop extrusion by
cohesion complex and zinc finger (loop extruding factor) and
topological insulation (55). All the forces, including mechano-
transduction, that shape the chromatin impact these regula-
tions. These modifications involve both histones and DNA,
including histone acetylation, which usually increases DNA
accessibility to transcription factors, methylation of DNA,
which usually represses expression, and noncoding RNAs
(miRNA, lncRNA), which can compete with coding RNAs or
greatly reduce their half-life. These modifications of a gene’s
epi-microenvironment can, in some cases, be reversible. For
instance, acetylation of histones under the control of histone
acetyl transferase complexes (HAT) can be reversible under
the effects of histone deacetylases (HDACs), such as those of
the sirtuin family (448) (see below).

In relation to outward soluble mass transport, circulating
cell collision, and diverse (mechanical, oxidative, proteo-
lytic, etc.) wall injuries, SMCs are able to adapt by shifting
from canonical contractile phenotype to more diverse phe-
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FIGURE 11. Smooth muscle cell (SMC) epigenetic
plasticity. In response to blood-borne injuries, SMC
can constitutively modify their pattern of gene ex-
pression, and in this way to acquire new phenotypes.
VSM, vascular smooth muscle.
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notypes (393). Over the last 30 years, the shift from a con-
tractile to a proliferative and synthetic phenotype has been
the most studied involving SRF/myocardin interactions
with CArG boxes on the promoters of genes coding for
SMC contractile proteins (SM22a, MYH-11, calponin,
etc.) on one hand and the partial limitation of this pathway
by an epigenetic complex associating HDAC2, KLF4, and
p-ELK on the G/C repressor of these genes in response to
injury on the other hand (467). The molecular mechanisms
of other phenotypic shifts [endocytosis of lipids and foam
cell formation, clearance of protease/antiprotease com-
plexes, phagocytosis, osteoblastic phenotype (234, 303)]
and their interactions with canonical SMC processes (con-
tractile/synthetic) open up a new field of research. These
shifts are adaptations to changing environmental condi-
tions and are potentially due to an adaptive waking up of
archaic functions through epigenetic memory, as described
above for the myoepithelioid shift of SMCs in the glomer-
ular afferent arterioles under renin stimulation conditions
(326). This plasticity renders the identification of the SMC
lineage within the arterial wall particularly difficult during
functional changes. For instance, the waking up of endocy-
totic and phagocytotic functions related or not with clear-
ance activities is associated with the expression of the
phagolysosomal CD68 antigen, which was initially de-
scribed in the transition of circulating monocytes of my-
eloid origin to tissue macrophages, conferring upon the
SMCs a macrophage-like phenotype (455). This led to the
misinterpretation of the SMC phenotypic shift as an intru-
sion of macrophages into the arterial wall. It was thus nec-
essary to develop new specific epigenetic markers of cell
lineage rather than functional markers (CD68) of the phe-
notypic switch. This observation provides also evidence of
common functional memories for adaptation to change in
environmental conditions (endocytosis and phagocytosis
here) whatever the cell lineages.

Arterial SMCs acquire specific epigenetic footprints during
development (180). Since SMCs are not terminally differ-
entiated and easily partially or totally reverse their contrac-
tile phenotype, it is important to define a marker of SMC
identity through lineage memory. A specific epigenetic
mark has been recently identified by associating in situ hy-
bridization and a proximity ligation assay between
H3K4me2 at the locus of SMC myosin, which is restricted
to the SMC lineage (179) regardless of the phenotype
switch.

Epigenetics encompasses different molecular processes,
which lead to phenotypic heritability that does not depend
on changes in DNA sequences involved in the inheritance of
genetic traits. Therefore, epigenetic adaptive or mismatch-
ing memory differs from genetic inheritance but also from
the canonical response (ligand receptors, second messen-
gers, nuclear translocation, gene expression) to reversible
changes in environmental conditions. For instance, specific

cellular differentiation in a Taylorized and hierarchized or-
ganism is a broad area of epigenetic applications (450).
These epigenetic processes encompass DNA methylation on
CpG sites (252); histone (H) modifications, mainly acetyla-
tion or methylation on lysine (K) or arginine (R) residues;
phosphorylation and ubiquitination (189); and long (lnc)
(324) or micro (mi) noncoding interfering RNA (544).
Methylation of C in CpG sites in the promoter region of a
gene (particularly housekeeping genes) silences gene expres-
sion. Acetylation of the histone NH2-terminal tail dimin-
ishes the electrostatic affinity between histone proteins and
DNA and thereby promotes a chromatin structure that is
more permissive to gene transcription. This process is under
the control of enzymes: methylase, HAT, and HDAC. The
binding of noncoding RNAs to their mRNA target through
base pairing leads to mRNA degradation when pairing is
complete or inhibition of translation when pairing is par-
tial. Several miRNAs can bind the same mRNA, and a sin-
gle miRNA can bind several mRNAs, showing the complex-
ity of the noncoding RNA system in the regulation of gene
expression. Noncoding interfering RNAs can be trans-
ported in cell-generated exosomes (601) and, therefore,
may be detected in blood as peripheral biomarkers (54).

Since the specific maturation of arterial wall structure takes
place during fetal life and postnatal development, and since
arterial pressure remains low during fetal life, it is clear that
high arterial pressure does not directly drive the ontogeny of
arterial wall modeling. Conversely, vascular SMC differen-
tiation appears early in mouse development and is common
to arteries and veins (304). This specific modeling involves
the three-layered structuring of the wall, supported by flow-
dependent endothelial propagation, as the initial driving
force for initiation of tube formation and recruitment of
mural cells through endothelial PDGF (451) and basic fi-
broblast growth factor (16) expression and secretion during
fetal life in the absence of high pressure. Therefore, arterial
wall structuring during fetal life is potentially an exaptation
to adapt SMCs and ECM to arterial tensile stress after birth.
The arterial wall is not completely matured by flow at birth
because of the low level of pressure, the second fundamental
and more recent hemodynamic stimulus. Therefore, post-
natal pressure-dependent stretching (mechanotransduc-
tion) of the arterial wall potentially exerts a dynamic epige-
netic control of the SMC phenotype during growth, which
continues throughout life. The numerous epigenetic mech-
anisms involved in postnatal adaptation to the Laplace law
remain to be deciphered.

VI. FROM CIRCULATORY EVOLUTION TO
CARDIOVASCULAR PATHOLOGIES

In this last section we will try to show through examples
how the phylogenesis of the circulation and its physiologi-
cal footprints (mechanical energy transfer or dissipation,
mechanotransduction, outward convection, inward cellular
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conductances, circulating cell collision, and epigenetic plas-
ticity of SMCs) are the most common denominators of hu-
man cardiovascular pathologies involved in both the dam-
age and the responses of the arterial wall.

A. Atheroma

Due to the immeasurable number of scientific and medical
publications on atheroma, atherosclerosis, or atherothrom-
bosis, this article does not intend to be an exhaustive review
of the disease, which, however, remains the first cause of
death in developed countries. We will focus on the hemo-
dynamic consequences and the roles of the SMCs in the
different stages of human atheroma progression. Seymour
Glagov (1925–2008) was a pioneer in observing (autopsies)
and establishing (primate experiments, biophysical ap-
proaches) a direct relationship between privileged sites of
atherothrombotic development (internal carotid artery, in-
frarenal abdominal aorta, and coronary arteries) and hemo-
dynamic stress (170, 171), including low shear stress, oscil-
latory shear stress (38, 39, 287), and high tensile stress
(581).

1. Fatty streaks

The initial stage of atheroma is the subendothelial accumu-
lation of yellow lipids named “fatty streaks” in the highly
pressurized arterial part of the circulation, both in animals
(15) and humans (391). The low pressurized veins and pul-
monary artery are devoid of fatty streaks, showing that
arterial pressure-dependent unidirectional advective con-
vection of lipid plasma transporters is a necessary condition
for the development of fatty streaks (FIGURE 9). Fatty
streaks are related to both the outward transport of lipids
by lipoproteins from the plasma through the wall and the
specific retention due to interaction of low-density lipopro-

tein (LDL) with glycosaminoglycans (GAG) (520) synthe-
sized and secreted by intimal SMCs. The interactions of
apolipoproteins with highly sulfated, negatively charged
GAGs are mainly due to the positively charged domains of
apo B100 (lysine and arginine-rich domains), both in exper-
imental animals [rabbit (437) and mouse (491)] and in hu-
mans (83, 597) (FIGURE 12).

Circulating high-density lipoproteins (HDLs) are also con-
vected through the wall but not retained as are LDLs. But
apoA1 can be oxidized during this mass transport, inducing
dissociation of apoA1 from its lipid cargo (121, 239). Free
oxidized apoA1 (molecular mass 25–30 kDa) and A2 are
rapidly filtrated and metabolized in the proximal tubule,
involving cubulin/megalin-dependent endocytosis by epi-
thelial cells (127, 210, 283, 366) responsible for the ob-
served decrease in circulating HDL. Inversion of the diet
from cholesterol-rich to cholesterol-poor is able to reverse
the lesions in rabbit (535). It is interesting to note that,
except for the rabbit, the majority of mammals do not spon-
taneously develop atheroma in response to a high-fat diet
but instead develop hepatic steatosis (592). This is due to
their lipid-poor regimen in wild life, the totally different
lipid transporter profiles (596) in animals relative to those
in humans, and the nature of the proteoglycans synthesized
by SMCs. Zebrafishes develop some lipid deposits in the
dorsal aorta under the endothelium, associated with in-
creases in endothelial permeability, predominantly at bifur-
cations, when subjected to a high-cholesterol diet (504).
However, these lesions remain limited to deposits in the
absence of an arterial wall medial layer and low outward
mass transport. Therefore, the zebrafish model appears to
be more adapted for studying lipid metabolism and oxida-
tive stress (143). Some arteriosclerosis has been described in
salmon (147). These lesions develop in the proximal part of
the salmon coronary artery, which is externally mechani-

FIGURE 12. Macroscopic and histological (apo B100 im-
munostaining) views of human aortic intimal fatty streaks in
close contact with intercostal ostia (*). The abundance of
apo B staining provides evidences of 1) the outward con-
vection of low-density lipoprotein (LDL) from plasma and 2)
the interaction and retention of LDL in the intima at the
initial stages of human atheroma.
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cally injured by the beating conus arteriosus. There are no
lipid deposits in the wall, only endo-proliferation of SMCs
and endofibrosis. Such an impact of external repeated mo-
tion (external mechanical fatigue of the wall) also has been
described in humans, such as in iliac artery endofibrosis in
cyclists (158). Likewise, arteriosclerosis was observed in
elephants involving medial fibrosis, arterial dilation and
calcifications (335), related to age but not to lipids (336).

In humans, bifurcation rheology favors fatty streak devel-
opment, including the posterior intercostal ostia in the
aorta (FIGURE 12), and on an SMC background. These pref-
erential localizations are dependent on local hemodynamic,
including low shear, flow oscillation and recirculation, flow
impingement, corresponding finally to dissipation of me-
chanical (Ep and Ek) energy within the wall. At this stage,
part of the cholesterol can be engulfed, forming foam cells.
SMCs are able to endocytose LDL, to partly metabolize
cholesterol (308, 309, 412), and to form liquid and solid
cholesterol crystals (228). Induction of fatty streaks by
a cholesterol-rich diet in primates can be reversed by diet
inversion (605), and a relationship of lesion regression to
wasting diseases was proposed after comparing undernour-
ished and obese subjects in an autopsy series (577). The
endocytosis capacities of SMCs are not limited to modified
LDL but also include the clearance of protease/antiprotease
complexes, in which plasma zymogens are activated on
SMCs and form complexes with tissue antiproteases, and
the complexes can be cleared by endocytosis involving
LRP-1 scavenger receptors present on SMCs (58).

In this context, the principle of outward convection of
plasma components is not limited to LDL but concerns all
plasma lipid transporters and circulating zymogens or sub-
strates that can be activated during their advective transport
by interactions with SMCs or ECM. For instance, blood-
borne complement components are largely present in early
plaques, where they can be activated by cholesterol crystals
(325).

2. Fibroatheroma

In response to this early lipid injury, the medial SMCs in-
wardly migrate and undergo subendothelial proliferation,
acquiring a proliferative and ECM-synthesizing phenotype,
forming a fibrocellular cap, covering the lipid accumulation
on its luminal side, and creating a lipid core. In fibroathe-
roma, the lipid core extends on a predominant acellular
background, and the cap SMCs are relatively resistant to
atheroma.

3. Foam cell

Foam cell formation can be seen in association with fatty
streaks and in the shoulder of the lipid core in fibroathe-
roma. Translucid and electron-dense foam cells are pre-

dominantly of SMC origin, as shown earlier by electron
microscopy (165, 166) and more recently by molecular im-
aging (12, 149, 167, 179, 180), but the ability of SMCs to
export cholesterol by the ATP-binding cassette transporter
A1 towards HDL is limited compared with that of macro-
phages of myeloid origin (8).

4. Wall-blood cell collisions

In addition to the outward convection of LDL, the collision
of circulating cells with the arterial wall also plays an im-
portant role in the initiation of atherosclerosis by releasing
cholesterol from cell membranes, proteases and oxidative
molecules, and finally, free DNA. This paradigm is not new,
since the famous Austrian pathologist C. Rokitansky
(1804–1878) described the arterial atheromatous process
as evolutive intimal blood deposits (453), including advec-
tive insudation of plasma proteins (convection) (610) and
blood cell deposit on and integration in the intima. These
early data fit well with numerous observations that nonoc-
clusive thrombi or clots can be incorporated into the intima,
participating in disease progression and involving lipid ac-
cumulation and cholesterol crystallization (reviewed in Ref.
474). The initial observations were reported by J. B. Duguid
(another human pathologist) in 1946 (128, 129). The prob-
ability of interactions between circulating cells and the wall
is in part proportional to their respective densities in the
blood (see above). Chandler and Hand (95) proposed that
platelet membranes are an important source of cholesterol
and foam cell formation via phagocytosis of activated plate-
lets, potentially by SMCs, in early atheroma. These data
were confirmed by Kruth (286), showing that fibrin ob-
tained from platelet-poor plasma is insufficient for promot-
ing cholesterol accumulation, whereas fibrin obtained from
platelet-rich plasma promotes cholesterol accumulation in
rabbits. Moreover, this foam cell accumulation is depen-
dent on platelet activation (phosphatidylserine exposition),
phagocytosis, and metabolism by SMCs. The role of plate-
lets in the initiation of atheroma was more recently con-
firmed by Stephen Massberg in mice (329), promoting the
activation and migration of SMCs via PDGF release (330).
We recently extended these observations to RBC incorpo-
ration in the arterial intima (119). Incorporation of senes-
cent (exposed phosphatidylserine) RBCs within the wall
promotes their phagocytosis by SMCs (281). RBC mem-
branes are cholesterol-rich, leading to intracellular choles-
terol accumulation, whereas hemoglobin leads to oxidation
via Fe2� release (Fenton reaction) in early atheroma (119).
These data, initially obtained in human aorta, were recently
confirmed in human coronary arteries (157). This ability of
SMCs to perform phagocytosis (efferocytosis) of dying cells
was first reported by Bennett et al. (44) and, once again,
depends on exposed phosphatidylserine. The role of circu-
lating cell collision and clot formation within the wall in the
initiation of atheroma was also exemplified by the rare cases
of atherothrombotic lesions observed in pulmonary arter-
ies. This was pointed out in the seminal work of Arbustini et
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al. (17). In this study, pulmonary artery atherothrombotic
plaques were observed in human PH, when PH is secondary
to thromboembolic events, but not in primary PH. These
cholesterol-rich pultaceous lesions involve RBCs, platelets,
and phagocytosis and evolve towards a necrotic core. A
similar experimental approach was proposed early on in the
rabbit (211). Therefore, whatever the cell type (platelets,
RBCs, leukocytes), blood cells incorporate the intima of the
arterial wall and undergo efferocytosis by SMCs via ex-
posed phosphatidylserines, metabolizing their membrane
cholesterol, forming foam cells, promoting cholesterol crys-
tallization, and releasing their contents within the cell. Nev-
ertheless, the efferocytosis capacities of SMCs are poten-
tially limited, and impaired phagocytosis promotes necrotic
core formation and plaque evolution towards vulnerability
and clinical expression of the disease (279, 280). This is
potentially why there is no debridement of the plaque, only
a luminal overlay by the fibrocellular cap.

5. Inward neoangiogenesis

Inward neoangiogenesis represents an important step in the
evolution of atherothrombotic pathologies towards their
clinical expression, through the ability of neoangiogenesis
to promote recurrent intraplaque hemorrhages and their
consequences on plaque vulnerability (reviewed in Refs.
353, 358).

J. C. Paterson was the first to report observations of neoan-
giogenesis and capillary ruptures in coronary atherothrom-
bosis (420), but he described neoangiogenesis developing
from the luminal surface (419). It is now well established
that plaque neoangiogenesis arises from the adventitial vasa
vasorum (35, 290, 553, 609), inwardly penetrating the me-
dia towards the plaque in response to outwardly convected
growth factors (228). In this process, VEGF plays a pre-
dominant role by initiating the sprouting of adventitial en-
dothelial cells towards the media, and medial SMCs are
major sources of VEGF (579). It was then shown experi-
mentally that inhibiting VEGF could have beneficial effects
on atherothrombosis progression (377, 378) in mice. Since
VEGF expression is highly sensitive to hypoxia through
hypoxia-inducible transcription factor (HIF), this signaling
pathway was proposed to be the driver of inward angiogen-
esis (492). However, inward neoangiogenesis is initiated
early in human atheroma in a context in which relative
hypoxia is highly improbable (see above convection of ox-
ygen) and was described in apo-E�/� mice with very thin
vessel walls and a normal arterial blood pressure (522).
Therefore, we proposed that inward neoangiogenesis can
be initiated by intimal phospholipid metabolism and the
radial transport of metabolites towards medial SMCs, in-
ducing VEGF expression and secretion through the PPAR-�
signaling pathway (227) (FIGURE 13). Inward neoangiogen-
esis is characterized by the development of arterioles, cap-
illaries, and venules, allowing diapedesis of circulating my-
eloid cells such as RBCs, neutrophils, lymphocytes, and

monocytes within the arterial tissue. The vessels arising
from this neoangiogenesis remain partly immature (130)
and are highly susceptible to rupture and bleeding (298,
416). In this context, neoangiogenesis and its intraplaque
hemorrhagic complications illustrate well both the princi-
ple of outward convection of soluble mediators generated
within the arterial wall and the capacity of SMCs to re-
spond to this stimulus.

Finally, neoangiogenesis is the main source of intraplaque
hemorrhages, conveying not only highly oxidative RBCs
with their cholesterol-rich membranes but also circulating
leukocytes of myeloid origin, including neutrophils (351),
destined to die and to release highly active proteolytic en-
zymes (301, 302), platelets, and clot formation-promoting
fibrinolytic enzymes (355), potentially participating in fi-
brous cap degradation and subsequent rupture, and extra-
cellular DNA as a potential substrate for calcium precipita-
tion and hydroxy-apatite nucleation (108). Nevertheless,
some cases of plaque rupture can remain silent, and thrombi
incorporated into the plaque may cause progression to-
wards a final myocardial infarct (75) or stroke.

6. Erosion

In addition to plaque rupture, another pathophysiological
cause of thrombosis, erosion, was observed in an autopsy
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series of acute coronary syndrome leading to death (144).
Optical coherence tomography and endovascular ultra-
sound or angioscopy (168, 289) confirmed these initial
pathological observations describing a thrombus attached
to an intact fibrocellular cap. This phenomenon appears to
be relatively specific to acute coronary syndrome and more
frequent in women than in men (589). In hemodynamic
terms, erosion is related to high frictional forces applied to
the endothelium of epicardial coronary plaques and bifur-
cations due to the diastolic flow entrance, whereas plaque
development and rupture are potentially more related to
chronic high convection and blood stagnation in epicardial
arteries during systole as described above (see sect. III).

B. Adventitial Responses

As shown for neoangiogenesis, the adventitia is a target for
arterial wall remodeling, which occurs in different pathol-
ogies related to oxidation and proteolysis involving angio-
genesis, the adaptive immune response, and fibrosis (357).
In contrast to the media, the adventitia is a completely vas-
cularized tissue containing capillaries and venules, which
are privileged sites for leukocyte diapedesis, particularly for
lymphocytes, mast cells, macrophages, and dendritic cells.
It is also a privileged site for the integration of numerous
molecular signaling pathways involving outward convec-
tion from the lumen and media to the adventitia. Therefore,
the adventitia is the main site for the adaptive immune
response to arterial wall injury. The usual scenario of this
response involves the de novo formation of ectopic adven-
titial lymphoid granuloma and/or adventitial tertiary lym-
phoid organs (ATLOs, more complete maturation, B cells)
(594), observed in atherothrombosis (595), acquired aneu-
rysm of the abdominal aorta (AAA) (133), autoimmune
aortopathy (104), and chronic vascular allograft rejection
(533). The development of such a maturing adaptive im-
mune structure, including a germinal center and T helper
and B cells, which are able to mature and secrete antibodies,
requires both 1) a network of chemokines and cytokines,
adhesion molecules, and crosstalk with tissue stromal cells
(193) within the microcirculation; and 2) neoantigens radi-
ally convected from inner lesions to the adventitia. In
atherothrombosis (508), including AAA (105), luminal
proteins modified by oxidation and/or proteolysis poten-
tially represent the majority of these autoantigens able to
support the maturation process towards antibody synthesis
and secretion (508). Likewise, some autoimmune diseases,
such as lupus erythematosus (161), enhance atherosclerosis
progression. In contrast, the autoantigens generated during
autoimmune aortopathies remain unknown. In vascular al-
lograft rejection, major histocompatibility complexes
(432), generated within the allogenic wall, are directly in-
volved in ATLO formation as demonstrated by their restric-
tion to the allografted segment (532). Whatever the specific
immune mechanism and the etiologic context, the constant
localization of the adaptive immune responses within the

adventitia underlines the constant involvement of the out-
ward convection principle in these phenomena.

Finally, there are some localized specificities in the expres-
sion of atherothrombotic pathology: intraplaque hemor-
rhages in the carotid artery, erosion in the coronary arteries,
aneurysm in the abdominal aorta, and osteoid degeneration
in the femoral arteries. The relationship of these partial
specificities to local hemodynamics has not yet been com-
pletely deciphered.

C. Aortic Valve Diseases

Like atheroma, degenerative aortic valve diseases are di-
rectly linked to the principle of convection driven by a pres-
sure gradient specific to valve biomechanics (28). The trans-
valvular pressure gradient peak is diastolic for the aortic
valves (FIGURE 14), whereas it is systolic for the mitral
valve. Therefore, convection of plasma components
through closed aortic valves takes place during diastole, and
degenerative pathology always begins and evolves within
the fibrosa, the most pressure-exposed layer. Conversely,
the pathology always begins in the ventricularis for the
mitral valve. As in atheroma, the initial step of the disease is
the accumulation of lipids (fatty streaks) in the fibrosa of
aortic valves. The role of gravitational force is, once again,
exemplified by the aortic valves in giraffes (10). In their
study, Amstrup Funder et al. (10) compared the aortic valve
in the giraffe and the cow. The giraffe aortic valve is bio-
mechanically 70% stronger and stiffer and morphologically
thicker and richer in collagen and elastin compared with
that of the cow. These data are only partly reproduced in
the mitral valve. This comparison provides evidence of a
major role for hemodynamics in cardiac valve structural
adaptation and the ensuing degenerative valve disease.

Although arterial atheroma and aortic valve disease share
common initial pathways of LDL accumulation in the arte-
rial intima and the valvular fibrosa, these pathologies evolve
differently, with a predominant development of calcifica-
tions in valves without formation of a true fibrous cap.
Promotion of calcifications in soft tissues is always due to
ionized calcium precipitation on (inorganic) phosphates,
forming calcium-phosphate [Ca3(PO4)2] that rapidly orga-
nizes into solid hydroxyapatite crystals. The sources of
phosphates are numerous, including membranous (438)
and transported (lipoproteins) phospholipids (85), metab-
olism involving phospholipases, energetic metabolism using
ATP or GTP as substrates, free DNA (108), and circulating
phosphates. Later, the valvular interstitial cells (VICs) can
acquire an osteoblastic phenotype (370), thus enhancing
the calcification process.

In relation to the convection of plasma lipoproteins through
the valve tissue, lipoprotein(a) [LP(a)] plays an original role
(399). The epidemiological and genetic data have been con-
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firmed in experimental models that are physiologically
highly resistant to calcification (mouse, rabbit) (221): the
transgenesis of apolipoprotein(a) [apo(a)] in mice or direct
intravenous injection of recombinant human apo(a) in rab-
bits promote the development of aortic valve calcification in
these animals (593). LP(a) preferentially transports oxi-
dized phospholipids (45). Apo(a) is a protein that arose
during evolution and first appeared in primates from the
duplication of the plasminogen gene. Like plasminogen,
apo(a) possesses kringle domains (KIV) that are able to bind
to the lysine residues in COOH terminals on fibrin but also
on proteins of cell membranes, and this binding competes
with that of plasminogen (332). In this context, the main
ligand of plasminogen on VICs is urokinase (u-PA) retained
on the cell membrane by the u-PA receptor (UPAR) (278). A
new transmembrane protein able to bind plasminogen has
been identified as plasminogen receptor lysine-terminal (Pl-
gRkt) (14). PlgRkt forms clusters with UPAR/u-PA to acti-
vate plasminogen. Apo(a) competes with plasminogen on
the lysine residue of this receptor (454). Finally, this recep-
tor is involved in the endocytosis and recycling of LP(a) in
the liver (484). Therefore, we can reasonably hypothesize
that LP(a) could be endocytosed by the VICs via the PlgRkt/
u-PAR complex, intracellularly metabolizing its phospho-
lipid cargo and releasing phosphate, which acts as a sub-
strate for calcium precipitation. These points are of impor-
tance since lysine mimetics, such as tranexamic acid or
	-aminocaproic acid, are able to inhibit the binding of krin-
gles to COOH-lysine residues, including plasminogen but
also apo(a) (497).

Finally, at a more advanced stage of aortic valve disease, as
in atherothrombosis, calcifications are associated with the
development of neoangiogenesis and peri-calcification

bleeding (5, 6). The molecular mechanisms of this neoan-
giogenesis have not yet been identified. These microbleeds
could potentially be related to the von Mises distortion
stress (235) between the highly deformable soft viscoelastic
tissue part of the valve and the nondeformable rigid/solid
calcified inclusion, triggering fatigue-like microscopic tears
at the edge of the calcification (267). Nevertheless, neoan-
giogenesis appears with lipid deposition within the valvular
tissue.

Aortic valve stenosis is also a good example of the impact of
shear on hemorheology, particularly on vWF and its degra-
dation. vWF is a glycoprotein synthesized and secreted in
the plasma by the endothelial cells and the megacariocytes.
vWF is secreted as high-molecular-weight (HMW) multi-
mers, able to form one of the initial network of the co-
agulation by interacting with platelets and provoking
their aggregation (233). A defect of vWF function, genet-
ically determined or acquired, promotes hemostatic leak-
age. Physiologically, vWF is sensitive to shear stress, pro-
voking its elongation and promoting its proteolytic metab-
olism by ADAMTS13. In pathological conditions of high
shear stress, such as aortic stenosis, provoking an important
increase in blood velocity, the shear stress is enhanced, in-
creasing the rate of proteolytic degradation of circulating
vWF, decreasing its plasma concentration, shifting the
HMW multimeric vWF toward low-molecular weight
forms, promoting digestive bleedings (551) and potentially
mucosa angiodysplasia.

D. Aneurysms

Aneurysms are anatomically defined as localized dilations
of the arterial wall, functionally defined as a progressive loss

Systole Diastole

Ventricularis Fibrosa

Aortic valve

Flow

Transvasculare
pressure gradient

FIGURE 14. Hemodynamics of the aortic valves
and the impact of transvalvular convection of lipo-
proteins during diastole on the initiation of pathol-
ogy in the fibrosa. Similar convective mechanisms
take place in the mitral valve ventricularis during
systole (not represented).
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of the arterial wall’s capacity to support its hemodynamic
load, and structurally defined as a thinning of the medial
layer due to proteolytic degradation of the ECM and SMC
loss, leading to rupture regardless of their localization
(346). Proteolytic injury of the ECM is usually caused by
blood-borne protease/tissue antiprotease imbalance. This
imbalance could be extrinsic, related to excess of blood-
borne zymogen convection and wall activation, or intrinsic,
related to loss of function mutations in the molecular com-
ponents of the ECM rendering it more sensitive to proteol-
ysis. SMC loss can be also linked to extrinsic or intrinsic
pathophysiology. Since adhesion to the ECM is a survival
necessity for SMC, proteolytic injury of ECM components
could induce SMC apoptosis by detachment (anoikis) (338,
345). Also, as withstanding the constant tensile stress and
pulsatile stretching in conductance arteries is energy con-
sumptive for SMCs, genetic or acquired defects in their
fueling and corresponding molecular signaling cause SMC
loss and progressive wall degradation. Pathological aneu-
rysms can theoretically develop anywhere along the arterial
tree, but in fact, they are mainly localized in the abdominal
aorta (AAA), the ascending aorta (TAA), and in the intra-
cranial cerebral arteries (ICAs) in humans. Spontaneous
aneurysms are rare in the animal kingdom, including in
mammals other than humans. Animals appear to be more
sensitive to acute rupture (dissections) of the aorta than to
progressive dilation (aneurysms). This is particularly true
for turkeys (284). The formation of ICAs is also rare in
animals (7/2,000 animals including 29 species) (381). AAA
formation is mainly due to injury by extrinsic blood-borne
components involved in ECM degradation, SMC loss, and
the adventitial immune response, whereas TAA formation
is more directly or indirectly time-dependent on intrinsic
defects in SMCs or ECM function. Understanding the com-
plex and potentially diverse pathophysiology of ICA re-
mains to be explored further.

The clinical and biological pathology of AAA, including its
pathophysiology, has been recently extensively reviewed
(464). The direct relationship between atherothrombosis in
the human infrarenal aorta and acquired AAA development
was established by the seminal works of Glagov and co-
workers (586, 604), including experimental studies in pri-
mates (603). The authors also proposed that the reduced
number of lamellar units present in the human infrarenal
aorta could sensitize it to AAA development (606). The
study of Vollmar et al. (555) potentially confirmed the role
of local hemodynamics in the infrarenal aorta, showing that
AAAs were more frequent in men with above-knee ampu-
tation, and the greater curvature of the aneurysmal sac al-
ways developed on the opposite side of the nonamputated
leg, suggesting that reflection waves on bifurcations can
play an important role in the lateralization of AAAs.

Due to the blood stagnation, flow oscillations, and wave
reflections, the infrarenal aorta is a privileged site for blood

cell collision and clotting. This initial nonocclusive mural
clotting is usually asymptomatic, and blood flow is not
greatly perturbated. In this hemodynamic context, blood
flow continuously entertains a luminal active process of
clotting (540), involving fibrin formation and trapping of
all different blood cell types at the interface between circu-
lating blood and the intraluminal thrombus (ILT) usually
observed in human AAA (354) (FIGURE 15). Therefore, the
ILT is a multilayered biologically dynamic neo-tissue, in
which permanent luminal clotting is continuously and pro-
gressively counteracted by active fibrinolysis (237) involv-
ing several proteases (305), accumulating RBCs and their
lysis, which releases their hemoglobin and membranous
cholesterol content. Due to the outward convection of nu-
merous proteases and RBC lysis, the biologically active ILT
progressively injures the arterial wall by proteolytic and
oxidative processes, inducing ECM degradation, SMC loss
(354), and adventitial innate and adaptive immune re-
sponses (357), finally leading to wall rupture. The patho-
genic role of ILT luminal renewal is not only limited to AAA
progression but also includes the prevention of the healing
process. This is mainly due to the aggressive proteolytic
environment (155) and to some related consumption co-
agulopathies (611), including a decrease in platelet count
and plasma fibrinogen concentration, associated with in-
creased D-dimer release but also relative anemia due to
RBC retention and lysis in the ILT (327), HDL oxidation,
and finally a decrease in the plasma apoA1 concentration
(74). Similar processes are at play in chronic dissection of
the descending thoracic aorta (465) in relation to blood clot
renewal in the false channel.

In contrast, aneurysms of the ascending aorta (TAA) are not
related to atherothrombosis, but sometimes fatty streaks
and intimal proliferations can be observed, particularly in
degenerative form in elderly patients. The ascending aorta is
usually devoid of atherosclerosis (581, 604), due to the
powerful washing effect of the cardiac systolic ejection. In
this context, the rare presence of atheroma could be second-
ary to the aortopathy (increase in wall permeability). TAAs
(except autoimmune Horton’s disease, vasculo-Behcet’s
syndrome, and Takayasu arteritis) are related to three main
etiologies: rare hereditary genetic diseases, association with
bicuspid aortic valves, and degenerative forms in older pa-
tients (recently reviewed in Ref. 352). However, regardless
of etiology, mechanotransduction, particularly wall tension
(Laplace law) and SMC biology and death, play important
roles in the development of TAA and the risk of dissection.
Genetic forms involve three families of signaling pathways:
mutations in the components of the ECM, in the TGF-�
pathways, and in contractile proteins. These three path-
ways directly implicate different aspects of SMC physiol-
ogy: adhesion to ECM, protease/antiprotease synthesis and
the clearance capacity of SMCs, and finally, contractile
function and mechanotransduction, from ECM tensile
stress to cytoskeleton and finally nuclear mechanotransduc-
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tion (359). Whatever the etiology, including deficit in ener-
getic support, the SMC-matrix connections at the contrac-
tile-elastin unit are variably altered in human TAA (240).

Certain rarer mutations are of particular physiopathologi-
cal interest in TAA. Mutations in methionine adenosyl-
transferase 2 (MAT2A) are associated with a high risk of
the hereditary form of TAA (195). Since MAT2A is an
enzyme that transforms methionine into S-adenosylmethio-
nine, the universal methyl group donor, its loss of function
mutation directly impacts the epigenome, including DNA
and histone methylations, and interferes with sirtuins (524)
(see below), increasing the metabolic vulnerability of the
ascending aorta. Likewise, GLUT10 (a glucose transporter)
mutations are involved in arterial tortuosity (elongation)
and aneurysms (82). Loss of function of GLUT10 directly
impacts mitochondrial function and ROS production
within SMCs (519). Similarly, loss-of-function mutations in
FOXE3, a fork head transcription factor, are also associ-
ated with a hereditary risk of developing TAA (288). Foxe3,
a member of the FoxO family, targets genes involved in
DNA repair, glucose metabolism, and energy homeostasis
by buffering ROS (546). Similarly, nicotinamide phospho-
ribosyltransferase (NAMPT) and NAD fueling participate
in the maintenance of arterial wall integrity (569). NAMPT
is expressed in human SMCs of healthy aortic media, but
this expression is reduced in TAAs, whatever their etiology.
This significant decrease is negatively correlated with the

ascending aorta diameter, associated with an increase in
strand breaks of unrepaired DNA and methylation of the
NAMPT promoter in human TAA tissues. A complete de-
ciphering of this pathway, including the role of poly(ADP-
ribose) polymerase (PARP) was established through SMC-
selective transgenic approaches in mice (569). Therefore,
these mutations and signaling provide evidences of links
between SMC energetic demands, chromatin integrity, and
nuclear pulsatile mechanotransduction in the physiology of
the aortic wall, negative modulation with time (aging), and
defects in pathology.

In addition to the classical form of TAA, and among the
genetic determinants of disorganization and dysfunction of
the ECM, are the rare haplo-insufficiency (supravalvular
aortic stenosis, sVAS) or dominant negative mutations (cu-
tis laxa, ADCL) of the elastin gene. Larger deletions includ-
ing the elastin gene and other neighboring genes (Williams-
Beuren syndrome, WBS) are phenotypically different (131).
In addition to predominant elastin fragmentation in the
skin, ADCL can induce pediatric aneurysms and tortuosity
of the conductance arteries (198). Elastin haplo-insuffi-
ciency (SVAS and WBS) preferentially induces localized (as-
cending aorta, pulmonary artery, coronary ostia) endovas-
cular SMC proliferation and a systemic decrease in arterial
diameter (258), a decrease in aortic compliance (148), an
increase in stiffness, and frequent hypertension, potentially
related to a low diameter-dependent increase in frictional
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FIGURE 15. Consumptive activity of the
intraluminal thrombus (ILT) in abdominal
aorta. Since the ILT is not occlusive, the
flowing blood continuously nurtures its lu-
minal pole with blood plasma and particu-
late components. Therefore, the ILT is an
active neo-tissue with a spatial and tempo-
ral organization, continually undergoing lu-
minal renewal and abluminal fibrinolysis.
Since the ILT is highly porous, all the sol-
utes and microparticles generated within it
are outwardly convected towards the wall,
promoting its proteolytic and oxidative deg-
radation, leading to smooth muscle cell
(SMC) and extracellular matrix (ECM) dis-
appearance. In some cases, this biological
activity of the ILT can be so intense that it
can have a systemic impact on the circu-
lating blood composition: consumptive co-
agulopathy, consumptive anemia, and high-
density lipoprotein (HDL) consumption due
to apo A oxidation within the ILT.
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forces, due to diffuse SMC proliferation in conductance arter-
ies (202). Localized SVAS can be detected after birth and can
evolve throughout growth. SVAS is associated with an in-
crease in arterial wall thickness, an increase in SMCs and elas-
tic lamellae, with a decrease in elastin density and content. In
SVAS, collagen remains unaltered and, as described above,
is mainly involved in resistance to rupture. Thus vascular
Ehlers-Danlos syndrome (vEDS), a rare disease due to
pathogenic mutations in COL3A1, is characterized by re-
peated acute events of localized dissections, acute arterial
rupture, postinfarct ventricular ruptures, pneumothorax,
and varicose veins (80). In this context of high vascular wall
fragility, surgical and endovascular procedures are always
extremely difficult and risky.

TAA is one of the clinical and biological models in humans
for studying the epigenetic impact and inheritance of SMC
physiology (180), pathology, and clinical translation (54).
Whatever the etiology, TAAs are characterized by an in-
crease in arterial wall permeability that enhances convec-
tion of plasma zymogens through the wall. In particular, a
defect in the SMC contractile response to tensile stress (88)
and a degraded elastin network considerably increase the
radial transport of plasma zymogens (539), including plas-
minogen (56), across the wall. In this context, conversion of
plasminogen into plasmin by SMC activators (t-PA and
u-PA) leads to degradation of the ECM, inducing SMC
detachment and anoikis (338), therefore promoting arterial
wall fragility. Nevertheless, the SMC is also able to synthe-
size antiproteases, particularly protease nexin-1 (PN-1), a
tissue serine-protease inhibitor, which is able to block the
fibrinolytic system (61). Of note, the primary function of
mural cells in evolution (zebrafish) is to limit proteolytic
injury to maintain arterial wall integrity [see above (507)].
Although SMCs are not able to clear active proteases but by
secreting antiproteases, which form complexes with active
proteases (but not with zymogens), SMCs acquire the abil-
ity to clear these protease/antiprotease complexes by endo-
cytosis via the LRP-1 scavenger receptors (59).

Progressive dilation of the ascending aorta increases the
tensile stress exerted on the wall, subjecting SMCs to an
increase in pulsatile mechanical stretching, stimulating
mechanotransduction, including at the nuclear level (see
above). In one of our studies on TAA, we observed that
there is a complete dissociation between the TGF-� path-
way and SMAD2 expression in TAA (175). Nuclear trans-
location of p-SMAD2 is constitutive in SMCs of TAA,
whereas TGF-� is highly localized. Moreover, this epige-
netic modification is present in cultured SMCs from TAA,
passed on through successive cell culture passages, and is
SMC-specific (the epigenetic shift is not present in adventi-
tial fibroblasts) (176). We deciphered the molecular mech-
anism of this constitutive SMAD2 expression and activa-
tion as an epigenetic phenomenon. It involves alternative
splicing on the SMAD2 promoter and formation of an ac-

tivator complex, independent of TGF-�, associated with a
shift in Myc as a repressor, by P53 as an activator transcrip-
tion factor, PCAF and GCN5 as HAT (466, 557) and
TRRAP (transformation/transcription domain associated
protein), leading to chromatin remodeling involving H3K9
acetylation (178). We then explored whether this epigenetic
regulation also exists in human aortic tissue in acute dissec-
tions of similar etiologies. We observed that there is no
epigenetic shift in SMAD2 expression and activation in aor-
tic dissection, whereas protease activation is similar (plas-
min, t-PA, u-PA). In contrast, in aneurysms, SMAD2 over-
expression and activation lead to constitutive synthesis of
antiproteases, such as PN-1 and PAI-1 (tissue serpins), by
SMCs, independently of TGF-� (177). Therefore, SMCs of
aneurysmal origin are more resistant to proteolysis than
SMCs from acute dissections (177). In this context, we can
conclude for the first time that protective chromatin remod-
eling takes place in chronic dilation in response to a pro-
gressive increase in tensile stress, whereas this protective
mechanism does not operate in cases of acute arterial wall
rupture (352).

As in atheroma, TAA can be associated with a moderate
development of inward neoangiogenesis, but in contrast to
atheroma, this intramedial neoangiogenesis is not depen-
dent on VEGF but rather on angiopoietins (268).

The third localization of arterial aneurysms is intracranial.
ICAs are associated with a risk of rupture and a high neu-
ronal mortality and morbidity. ICAs are usually saccular
aneurysms, developing on or near bifurcations. Localized
specific hemodynamics are constantly involved in ICA de-
velopment and rupture (162). Due to complete swirling
flow in the aneurysmal sac, a cup-like ILT usually develops
in ICA and remains biologically active, as in AAA (319).
The relationship of ICA to local hemodynamics was also
exemplified by the experimental model of Hashimoto, in
which the association of a unilateral carotid ligature with
systemic hypertension could lead to anterior aneurysm for-
mation in rats (215–217). In this experimental model, hy-
pertension and a high flow in the anterior communicating
artery are necessary to obtain aneurysmal development.
Hypertension alone or ligature alone is not sufficient for
aneurysm formation. Sometimes, the addition of �-amino-
propionitrile (BAPN), a lysyl-oxidase inhibitor that pre-
vents the formation of covalent bridges in the ECM, is also
necessary to obtain aneurysms. The Hashimoto model can
be analyzed with regards to genetic TAA, induced by mu-
tations of contractile proteins (see above). In TAA, these
loss-of-function mutations on myosin, actin, or MLCK or
gain-of-function mutations of PKG-1 lead to aneurysm for-
mation because of the lack of adaptation of SMC contrac-
tile function and tensegrity (elastin-contractile unit) in re-
sponse to tensile stress (359). Physiologically, a localized
increase in tensile stress must be functionally compensated
by a myogenic contraction response and structurally by
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hypertrophy/hyperplasia of SMCs. In the Hashimoto
model, localized increase in flow and shear stress activates
NO release by the endothelium, causing subjacent relax-
ation of SMCs not adapted to hypertension and sensitizing
the high-flow segment to dilation and the convection of
zymogens through the wall. Likewise, a mutation in angio-
poietin-like protein 6 (ANGPTL6) is also a genetic substrate
for a hereditary form of ICA (60). ANGPTL6, also known
as angiopoietin-related growth factor, is synthesized by the
liver (not by SMCs) and circulates in the plasma, promoting
angiogenesis (403) and playing a trophic role in other tis-
sues (404). In the ANGPTL6 genetic form of ICA, the
plasma level of ANGPTL6 in patients is one-half of that of
controls (60). Lastly, the development of ICA is highly de-
pendent on the integrity and geometry of the circle of Willis
(118, 264). In this context, hypoplasia of one segment of the
circle of Willis could create localized imbalance in blood
flow (392), and any change in its geometry (angulation)
could induce impingements on bifurcations (339, 549).

In clinical human ICA, the delayed gadolinium-enhanced
imaging of the wall after MRI angiography has been pro-
posed as a prognostic marker of gravity (469). This delayed
enhancement could reflect different phenomenona includ-
ing a luminal thrombus and an increase in wall permeabil-
ity.

E. Heart Failure

Whatever its etiology (postinfarct, valve diseases, primitive
cardiopathies, myocarditis, fibrosis) and its evolutive clini-
cal stage (conserved or decreased ejection fraction), left-
sided heart failure (HF) is characterized by an increase in
end-diastolic pressure (EDP) within the LV cavity. There-
fore, HF is hemodynamically a direct application of the
energy transfer and dissipation in which the increase in
residual EDP provides evidence of the transfer of mechani-
cal energy of motion (Ek) into pressure (Ep) (FIGURE 16).
This is directly related to the functional geometry of the
ventricular cardiac band (537), which aligns the LV cavity
on the aortic orifice in isovolumic protosystolic contraction
(337) and similarly promotes the most efficient filling flow
during diastole (72, 538). These LV wall alignments pro-
mote the physiological kinetic energy yield of ejection. In
contrast, this performance is limited by global or localized
dyskinesis or akinesis of the LV wall in HF. In these cases,
there is dissipation of velocity vectors during systole (356)
and diastole (22) in relation to changes in functional topol-
ogy of the LV wall motion (long-axis versus short-axis,
ultrasound and RMI) (138, 422). This change defines an
increased LV impedance to ejection and filling, whether the
ejection fraction is conserved or not, increasing the mechan-
ical work of the heart and thus causing a corresponding
increase in metabolic demand. Moreover, this defect in
pumping ability yield can be amplified by the electrical de-
synchrony sometimes associated with HF (423). This hemo-

dynamic overload could evolve toward dilatory remodeling
leading to decrease in ejection fraction (518).

The endocrine natriuretic function of the myocardium is
also modified by the change in mechanotransduction asso-
ciated with HF (347). Secretion and synthesis of the NPs,
first atrial natriuretic peptide (ANP), identified physiologi-
cally by de Bold in the atrial granules, which are sensitive to
salt and water retention (115), and then brain natriuretic
peptide (BNP), discovered later (333). The ANP gene
(Nppa) and the BNP gene (Nppb) are derived from the fish
archaic CNP-3 gene through duplication and divergence
(247). Nppa and Nppb are paralogous genes (317), abun-
dantly expressed in both atrial and ventricular myocardium
during embryonic and fetal life, but their expression is
strongly reduced in the LV after birth (482). In the context
of HF, regardless of the model, the fetal genomic program is
reactivated. Indeed, we were the first to describe ventricular
myocardial recruitment (hyperplasia) in response to hemo-
dynamic diastolic overload in an experimental model, with
a negative gradient from the base to the apex (295). The
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FIGURE 16. Heart failure. Evolution of heart function after left
ventricular myocardial infarction from healthy function (I) to conges-
tive heart failure (IV). The intermediary steps (III, akinesia, and IV,
dyskinesia) represent compensated stages in which the ejection
fraction may be conserved. All stages from II to IV are associated
with an increase in end-diastolic left ventricular pressure (EDP)
which defines heart failure, in both compensated and decompen-
sated stages. This increase in EDP provides evidence of the change
in the balance between kinetic and potential energy in the left ven-
tricle (LV) and dissipation of velocity vectors within the akinetic or
dyskinetic fibrous scar, and the transfer from Ek to Ep within the LV
cavity.
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mechanism of this ventricular recruitment for both ANP
and BNP synthesis and secretion has been recently identified
as chromatin remodeling in cardiomyocyte nuclei (229,
414), similar to what was described for the juxtaglomerular
apparatus and renin secretion (see above). Expression of
Nppa and Nppb is regulated via cis-regulated DNA ele-
ments. The Nppa and Nppb genes form a cluster separated
by kilobase pairs of the DNA sequence forming a chromatin
loop (topologically associating domains). This epigenetic
control of expression potentially involves H3K27 acetyla-
tion mediated by p300 and HAT, a super enhancer locus,
and RNA polymerase II (229). Nevertheless, although the
transcription factor Nkx2–5 is involved in fetal regulation
of Nppa and Nppb expression in the ventricle, the tran-
scription factor involved in the response to diastolic mecha-
notransduction in the ventricle of compensated or decom-
pensated HF remains to be identified (568). Therefore, the
circulating level of NPs or their precursors (NTerminal-Pro
BNP) remain the best biological markers of HF. Similarly,
NP and cGMP concentrations in plasma and urine are the
main pharmacological markers of neprilysin inhibition in
HF (181). The consequences of this energy transfer from
flow to pressure, including pulmonary consequences, are
the main determinants of the clinical expression of HF (43).

Epicardial adipose tissue (EAT), the visceral fat surround-
ing the myocardium (320), particularly along the coronary
arteries and on the anterior surface of the ventricles and
apex, is an integral component of the cardiac functional
anatomy (163) and is able to release fatty acids as metabolic
substrates for cardiac muscle activity. Moreover, quantita-
tive and qualitative changes in EAT are associated with
atherothrombotic pathology of the coronary arteries, atrial
dysfunction, and HF (409). The published data are some-
times ambiguous in HF, reporting a decrease in relative
EAT and its negative correlation with the LV remodeling
index (125) or an increase in EAT mass associated with
sympathetic desensitization in congestive HF (415, 574).
EAT may play a cardiac role through its thermogenesis
function, as a significant decrease in the thermoregulating
gene expression and function of EAT in HF was reported
(426). It is now well established that natriuretic peptides are
adipogenic (at low concentrations) and/or lipolytic (at high
concentrations) (36), controlling energy metabolism via the
cGMP signaling pathway within adipocytes (373). How-
ever, this effect depends on both the dose and the time
(172). Nevertheless, adipocytes are not the only cellular
targets of natriuretic peptides, which also interfere with the
renal epithelial cells via G-kinase II (96, 206), circulating
neutrophils (379), and more recently reported, the mesen-
chymal progenitors and fibroblasts of EAT (263). For in-
stance, it was recently shown that ANP drives the transition
of tissue mesenchymal progenitors to adipocytes in the
atrial epicardium (509). Likewise, NP-clearance receptor
knockout increases ANP bioavailability for NPR-A and
protects against TGF-�-dependent atrial fibrosis in atrial

fibrillation-susceptible mice (440), whereas Egom et al.
(134) reported increased fibrosis and slowed atrial conduc-
tion in natriuretic peptide receptor type C (NPR-C) knock-
out mice. Therefore, in addition to the prognostic value of
members of the NP system as biomarkers, the pharmaco-
logical manipulation of the NP system by agonists or po-
tentiation by neprilysin inhibition or inhibitors of cGMP
degradation remains to be explored clinically (556).

In addition to the pathophysiological aspect of HF, inter-
ventional therapeutics using left ventricular assist devices
raise the question of the specific role of pulsatility. Usually
these rotary pumps deliver a continuous flow rather than a
pulsatile one (365). Despite impressive clinical results, the
use of these devices induces mid-term complications includ-
ing spontaneous bleeding, aortic valve disease, thromboem-
bolic events, and impaired renal function. These patholog-
ical events are related to the absence of flow pulsatility and
continuous endothelial high shear stress, impacting hemo-
stasis, in particular the loss of function of HMW multimers
of vWF function (233), hemolysis, reverse remodeling of the
left ventricle, and aortic valve insufficiency (418). There-
fore, these observations provide evidence that pulsatile flow
and, potentially, pulsatile pressure are important determi-
nants in the maintenance of cardiovascular (CV) structure
and functions.

F. Hypertension and Aging

1. Observational studies in humans

The relationship of the arterial tissue aging process (mainly
aorta and carotid) to hemodynamic load has been largely
documented over the last 50 years through the detailed
study of human aging cohorts with follow-up and noninva-
sive (ultrasound, applanation tonometry, etc.) methods for
measuring intermediate hemodynamic parameters focused
on the loss of arterial wall elasticity. These developments
were associated with a similar approach in human arterial
hypertension, particularly in senior hypertension compared
with that of younger patients, diabetes, and chronic kidney
diseases. These observational data were recently reported
and synthesized in a remarkable book (395) (multinational
56 coauthors) devoted to the physiological aging of hemo-
dynamics and arterial function in gerontology and promot-
ing the new paradigm of “Early Vascular Aging” in hyper-
tension. Several hemodynamic parameters were analyzed,
including the measurement of pulse wave velocity (PWV) as
a functional marker of arterial wall stiffness, intima media
thickness (IMT) of carotid arteries, arterial diameters and
distensibility concomitantly with arterial pulse pressure, re-
flection waves, and coupling between large-conductance ar-
teries and distal resistance arteries and arterioles.

These hemodynamic measurements were used to follow-up
several cohorts of normotensive and hypertensive people.
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The final and global results attributed prognostic value for
mortality and cardiovascular events (coronary artery dis-
ease, stroke, heart disease, etc.) to the age-dependent rigid-
ity of the arterial tree, dependent or independent of other
CV risk factors (cholesterol, smoking, metabolic syndrome,
sex hormones).

This progressive time-dependent stiffness is related to re-
modeling, consisting of the adaptive (physiological) or mal-
adaptive (pathological) changes in arterial structure-func-
tion relationships. Aging remodeling differs between large-
conductance arteries and resistance arteries and arterioles
but predominates in large arteries, whereas remodeling of
arterioles predominates in hypertension. Few studies have
been conducted on the effect of aging on small arteries in
humans (380, 402) in comparison to changes in hyperten-
sion and the changes of large conductance arteries in aging.
These changes in resistance arteries essentially have been
investigated in experimental animal models of different
ages (296). In healthy rats, aging is associated with SMC
hypertrophy and an increase in the collagen-to-elastin ratio
leading to increased stiffness. In aging sheep, small mesen-
teric arteries have an increased lumen diameter and adapted
media thickness (Laplace law), leading to no change in the
lumen-to-wall thickness ratio, defining outward hypertro-
phic remodeling with no important change in mean (Poi-
seuille law) or in pulse pressure (402). These data fit well
with the observed absence of change in peripheral resistance
with aging in humans (293). In humans, as well as in rats
(350), conductance arteries (aorta, carotid, and femoral ar-
teries) also enlarge with aging with the persistence of a
sexual difference (female diameter � male diameter) (446,
552) in relation to elastic fiber fragmentation due to their
biomaterial fatigue (repeated stretching). The increase in
large artery stiffness is due to an increase in collagen content
associated with this elastic fiber fragmentation. At the SMC
level, the tensile cytoskeletal components also become more
rigid (613), leading to a new paradigm of “the SMC stiff-
ness syndrome” (478).

In 1956, Denham Harman proposed a theory of the aging
process that was dependent on oxidation, directly depen-
dent on metabolic activities and time (213), and therefore,
dependent on the mitochondrial respiratory chain and cell
redox status (FIGURE 17). In the last 10 years, it was dem-
onstrated that the enhancement of mitochondrial oxidative
activities and cytosolic oxidases (510) and the decline in
their control by SOD (612) occur with aging, aortic enrich-
ment in collagens, impoverishment and fragmentation of
elastic fibers, increase in arterial stiffness, and decreases in
the compliance and semiology of heart overload in animals
(406). A similar increase in ROS production was reported
to be involved in hypertension, focusing on the detrimental
role of oxidases not only in the arterial wall (endothelium
and media) but also in the kidney and CNS (312).

In the context of CV aging and pathologies in mammals,
epigenetic sirtuin1 (Sirt1) signaling pathways (269) play a
potential protective role in the prevention of CV disease
(275). Sirtuins are members of the deacetylase/transacety-
lase enzymatic family targeting both histone and nonhis-
tone acetylation. There are seven isoforms of sirtuins in
humans, which have slightly different molecular targets
with cooperative or opposing effects, rendering the deci-
phering of their physiology sometimes complex. Sirtuins are
derived from an ancestral gene, silent information regula-
tors (Sir2), which contributes to increased longevity in in-
vertebrates, in mammalian experimental models and, po-
tentially, in humans (47). Sirtuin enzymatic activities are
dependent on nicotinamide adenine dinucleotide (NAD�)
as a substrate (reviewed in Ref. 567). The beneficial effect of
Sirt1 on vascular aging, senescence, hypertension, and ath-
erosclerosis appears to be related to its capacity to activate
endosome-lysosome functions, in particular in the context
of autophagy in aging (462). At the vascular cell level, the
majority of studies focus on endothelial cells and on the
ability of Sirt1 to promote angiogenesis, activation of NO
synthase, regulation of autophagy, apoptosis, oxidative
pathways, and others (306). Studies focusing on Sirt1 in
heterophagy are rarer. Nevertheless, comprehension of the
role of Sirt1 in SMC physiology is currently extending. Sirt1
activation prevents the vasodilation impairment associated
with aging by enhancing guanylate cyclase expression
(197); promotes the specific expression of contractile pro-
teins (510), including SM22� and downregulation of
NF-
B (488); and protects against DNA damage (182).
Sirt1 enhances SMC migration and proliferation (561) and
prevents the osteoblastic phenotypic shift of SMCs and the
ensuing vascular calcifications (29, 37). It also prevents
foam cell formation (608) and therefore plays a potentially
protective role in atherosclerosis development (607). One
of the translational interests of the sirtuin system is that
there are natural pharmacological activators (resveratrol,
micromolar range of affinity) and inhibitors of Sirt1, and
development of synthetic compounds with better affinities
is currently underway (567). Another way to stimulate sir-
tuin is to improve the bioavailability of the substrate
NAD� via NA phosphoribosyl transferase activity
(Nampt) (569). Members of the sirtuin family are located in
the mitochondria, where they regulate energy and redox
activities (525).

At this stage, it is possible to propose that mitochondrial
and cytosolic oxidative stress provide the time-dependent
link between the metabolic physiological necessity of arte-
rial tone, SMC tensegrity and vasomotricity, and the path-
ological increase in this energetic demand with structural
and functional changes of the arterial wall observed with
aging and hypertension. In this paradigm, time-dependent
repeats of biochemical oxidative stress and its consequences
translate the biomechanical fatigue due to hemodynamic
loads.
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2. Progeroid diseases

In this context, the rare genetic disorders, progeroid syn-
drome, are interesting models of pathological accelerated
aging processes.

Hutchinson-Gilfford Progeria Syndrome (HGPS) is a very
rare genetic laminopathy related to de novo mutation in the
prelamin A gene (117, 139), which greatly impedes the final
maturation of lamin by the zinc metalloproteinase
ZMPSTE24, leading to accumulation of farnesylated
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FIGURE 17. Schematic diagram showing how smooth muscle cell (SMC) metabolic activity generates
oxidative stress. There are two predominant pathways that release free electrons and reactive oxygen species
(ROS) in SMCs: the respiratory chain in mitochondria and NADH/NADPH oxidase in the cytosol. These two
pathways are, respectively, directly involved in the generation of biochemical energetic substrates, ATP and
GTP for phosphorylation, and NAD/NADP regeneration for biosynthesis and polymerization.
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prelamin (progerin) in the rim of the nuclear envelope
(208). HGPS is characterized by growth retardation, thin
skin, hair loss, joint diseases, lipodystrophy, and most im-
portantly, cardiovascular diseases. Invariably these patients
die from myocardial infarction or stroke related to athero-
thrombotic events at around 20 yr, whereas their lipid pro-
files are normal, but their arterial wall is highly calcified,
mimicking, at least in part, aging arteriopathies (405). Since
HGPS is very rare, human pathological data are limited to
case reports. In this context, the accumulation of progerin
considerably changes the mechanical properties of the nu-
clear envelope, making it resistant to the biochemical ex-
traction of lamin and limiting its elastic recoil and envelope
deformability in response to stretching, resulting in lamin-
forming paracrystals (111). Arterial histopathology concor-
dantly demonstrates loss of SMCs in the media of conduc-
tance arteries, including the aorta and carotid and coronary
arteries, associated with a high degree of calcification, some
lipofuscin deposition, an increase in collagen content of the
media and the adventitia and atherosclerotic plaque forma-
tion (4, 31, 405, 449, 500, 501). Therefore, to better under-
stand HGPS and its impact on physiological cardiovascular
aging, transgenic models have been created (547), including
specific targeting of mutation expression in SMCs or my-
eloid cells (209). These transgenic approaches are always
associated with loss of SMCs, as in human progeria pathol-
ogy. Moreover, specific mutations targeting SMCs repro-
duce the arterial pathology, whereas targeting macrophages
has no consequences. Crossing an SMC-targeted mouse
with the apo E�/� hyperlipidemic mouse considerably ac-
celerates the development of atherothrombotic plaques and
complications, whereas crossing apo E�/� with macro-
phage-targeted progerin has no additive effect (209). In a
similar way, intranuclear and cytosolic vesicles are ob-
served in aortic SMCs of these transgenic mice, and SMC
disappearance predominates at branch points, colocalized
with more important fibrosis in the adventitia. These data
were recently extended to endothelial flow-dependent cell
mechanotransduction (408). An endothelium-specific pro-
geria mouse model developed endothelial dysfunction (a
decrease in NO generation), cardiac hypertrophy, and
perivascular fibrosis. In contrast to the SMC model, endo-
thelial progeria did not affect medial SMCs but suppressed
the development of arterial calcifications, suggesting a di-
rect role of SMC death in calcium precipitation on inor-
ganic phosphates. At the nuclear level, progeroid SMCs
showed misshapen nuclei and DNA damage promoting
SMC death in response to stretch. Finally, but most impor-
tantly, disrupting the LINC complex between cytosolic ac-
tin and lamin partially rescues the arterial lesions (272). In
contrast, since fishes have low vascular pressure and rare
mural cells, inducing progeria in zebrafish results in the
development of syndromic lesions without vascular injury
or life shortening (282). These data provide evidence that
the progerin rim in the nuclear envelope considerably mod-
ifies nuclear mechanotransduction in the arterial wall and

potentially prevents the associated epigenetic adaptation of
the SMCs, leading to catastrophic arterial disease.

Werner syndrome (WS) is also a genetically determined
adult progeroid, multisystem disease, usually diagnosed
later than HGPS, with a life expectancy of ~50 yr. The main
causes of death are cancer, myocardial infarction, and isch-
emic stroke (407). Werner gene (WRN) encodes for the
nuclear WRN protein, a helicase and exonuclease enzyme
directly involved in DNA stability, repair, cell cycle, and
telomere maintenance (297). WRN mutations in WS are
loss of function, inducing DNA instability, progenitor ex-
haustion, and impairment of autophagy as well as increas-
ing the oxidative stress within the target cells (297). HGPS
and WS share the ability to induce high levels of vascular
and valvular calcifications providing evidence of the ability
of free normal or abnormal DNA (tissue phosphate expo-
sure) to precipitate calcium in soft tissue, as also observed in
association with physiological aging (108). These observa-
tions lead to a more comprehensive understanding of the
interactions between chromatin dysfunctions as well as
pathological and physiological aging (251). This suscepti-
bility to aging could be related, at least in part, to the spe-
cific importance of mechanotransduction, particularly nu-
clear transduction, in the cardiovascular system. This par-
adigm is also confirmed by a population genetics study
showing that common variants in WRN can impact the
cardiovascular susceptibility to aging (102). It also opens up
new opportunities to prevent interactions between aging
and cardiovascular diseases, through NAD implementation
and maintenance of sirtuin activity (142).

VII. SYNTHESIS AND CONCLUSION

The evolution of animal species involves numerous stages
from invertebrates to aquatic vertebrates, transition forms
to terrestrial life and finally mammals. These transitions
were associated with numerous revolutions: exoskeleton to
endoskeleton, gills to lung, fins to legs, cold- to warm-
blooded, oviparity to viviparity, etc. This general evolution
was accompanied by specific circulatory developments ini-
tiated by archaic heart motions, followed by changes in the
circulatory system from an open system to a closed in-series
system, in which the bloodstream developed with limited
resistance to flow. This was followed by in-parallel circula-
tory systems in mammals (and birds), including a highly
pressurized arterial compartment, as initially observed and
described by William Harvey and a capillary compartment
as described by Marcello Malpighi, necessitating an impor-
tant mechanical energy dissipation between both. How-
ever, within Mammalia, dynamic evolution continued to
occur with the progressive acquisition of upright posture
(Homo erectus) associated with functional and structural
brain development (Homo sapiens), which necessitated
specification of the cerebral arterial circulation.
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Fetal development of the circulation in mammals, particu-
larly in humans, recapitulates the footprints of phylogeny
and escapes: blood mixing and shunting, low pressure, pre-
dominant role of flow, exothermy, etc. (FIGURE 18), but
exaptation (escape) of arterial pressure takes place during
ontogeny essentially regulated by pulsatile flow and relative
hypoxia. Peripheral resistance (frictional forces) appears at
birth and continues to increase during growth, generating
high levels of hemodynamic constraints which force the
specific differentiation of the arterial tissues and the plastic-
ity of SMCs. This adaptive development deals mainly with
epigenetic control of gene expression, involving, at least in
part, mechanotransduction related to the balance between
Ek and Ep.

The guiding principle of this complexification of cardiovas-
cular biology is the structural and functional adaptation of
the circulatory system to the specific metabolic demands of
each individual organ’s activity, integrated in general evo-
lution. In this paradigm, circulation ensures the basal vital
metabolic support to organs but also regulates the dynamic
adaptation (variable part) of this support to the organ’s
specific functional activity. This functional adaptation ne-
cessitates the acquisition of peripheral resistance to flow via
a progressive increase in frictional forces in the arterial part
of the circulation (arterial tone) and the ability of local
activity to inhibit this tone (local active vasodilation).
Therefore, high arterial pressure is a direct consequence of
this teleonomy, defined by peripheral resistance to flow and
impacting left ventricular work (afterload). The phenotypic

evolution of the circulation, and particularly its arterial
part, fits well with the idea of “correlated progression”
developed by T. S. Kemp (267a) as an integrated model for
evolution, in which phenotypic traits are mutually intercon-
nected. In circulatory evolution, the phenotypic arterial
traits are vasomotor tone and the ability to vasodilate, ar-
terial pressure, layered structure of the arterial wall, multiple
arterial bifurcations, left ventricular functional anatomy, etc.
and the intervening connections are the convection of solutes
through the wall, hemorheology, mechanotransduction, plas-
ticity of vascular SMCs, etc. Nevertheless, the own constant
activity of the circulatory system particularly LV and arteries
are energy consumptive, including the active structural and
functional maintenance of the arterial wall throughout the life
duration.

This correlated progression completely integrates the gen-
eral evolutive scheme of gain of activity, minimal work, and
efficiency. These phenotypic traits and connections are
mainly under epigenetic control. However, this “correlated
progression” is also the most common cause of cardiovas-
cular frailty in humans, including the high prevalence of
arterial/LV diseases.

VIII. FUTURE DIRECTIONS

In this concept many important physiological pathways re-
main to be further explored:

• The mechanism by which the different stages of circu-
latory system evolution footprint the ontogeny of the
circulation in mammals and particularly in humans.
Potentially epigenetic memories predominate in these
pathways, but regulations of gene expression are prob-
ably multiple and diverse, involving DNA methylation,
histone acetylation and methylation, miRNA, etc. It is
potentially a big challenge to identify specific patterns
of dynamic pathways controlling the different stages of
fetal development in mammals.

• To develop new technologies able to analyze the chro-
matin topology such as Chromosome Conformation
Capture (3–4C) extended to high-throughput 3C (Hi-
C), deciphering the three-dimensional conformation of
chromatin (13), applied to circulation development
and SMC plasticity, in response to different chronic
stimuli.

• The outward advective transport of soluble and micro-
particular plasma components through the wall is now
well established, but rarely taken into account in phys-
iology and pathology. Moreover, the fact that these
plasma components interact or not with matrix and/or
cellular elements of the wall is one of the driving forces
for atheroma development, but all arterial pathologies
are impacted by outward mass transport, and the role
of convection has not yet been explored in many of
them.

• Similarly it is of importance to further analyze the im-
pact of RBC collision with the wall and to define the
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role of this collision in the genesis of oxidation in rela-
tion to the catalyzer role of hem and Fe2�.

• To measure the clearance capacity of the SMCs, i.e.,
their ability to endocytose soluble components and to
phagocytose particulate ones, and to metabolize them.

• Therefore, to differentiate autophagy from het-
erophagy in the context of pathology and of physiolog-
ical aging.

• To identify more precisely the impact of SMC contrac-
tion/relaxation on the function of conductance arter-
ies: effect on compaction, permeability, delamination,
rigidity, proximal reflection wave forms, etc.

• Biophysical properties of blood and arterial wall are
potentially the main cause of CV disease. Biophysical
causation is now under acceptance for understanding
fundamental cell biology (48). We need to continue to
work on the role of gravity and of hemodynamic as
driving forces of CV pathologies.

• In particular, it will be important to develop tools (ul-
trasound, MRI) in humans to be able to further analyze
the role of mechanical energy transfer and/or dissipa-
tion in the vascular system and within the heart: local
dissipation of velocity vectors, local impingement of
flow on the arterial wall, local pressure reflection wave.

• And more precisely wall enhancement of delayed gad-
olinium retention in MRI angiography, potentially re-
flecting the convection principle.

Life is the organization of matter such that this organization
adapts to partially escape from the universal laws, which
largely govern the state of matter. This partial escape is
transitory (time limited) and necessitates energetic support
arising from a transfer of biochemical energy to organ func-
tions, such as biomechanical kinetic and potential energy
balance in the circulatory system.

GLOSSARY

Advection The transport of substances by an
associated kinetic fluid force:
liquid flow, air flow, bulk mo-
tion, which can escape, at least
partly, from gravity (horizon-
tal motion).

CpG islands DNA loci where a cytosine is fol-
lowed by a guanine in the lin-
ear sequence of bases (5= � 3=
direction) with an intermediate
phosphate.

Energy dissipation A physical process by which en-
ergy becomes not only unavail-
able but irrevocable in any
form (Merriam-Webster).

Exaptation A shift in the function of a trait
during evolution, a character
whose origin cannot be as-

cribed to the direct action of
natural selection (cooptation)
(185).

First thermodynamic
law

The law of energy conservation.
The total energy (E) of a closed
system is constant. Mechanical
energy can be transformed
from one form to another (en-
ergy transfer), producing work
(Wikipedia).

Mechanical
impedance

A measure of how much a struc-
ture resists motion when sub-
jected to a harmonic force. It
relates forces with velocities
acting on a mechanical system.
The mechanical impedance of
a point on a structure is the ra-
tio of the force applied at a
point to the resulting velocity
at that point (Wikipedia).

Paralogous genes Homologous genes that have di-
verged within one species. Un-
like orthologous genes, a
paralogous gene is a new gene
that holds a new function.
These genes arise during gene
duplication where one copy of
the gene receives a mutation
that gives rise to a new gene
with a new function, though
the function is often related to
the role of the ancestral gene
(Sciencing).

Percolation (From latin perco� la�re, “to filter”
or “trickle through”) refers to
the movement and filtering of
fluids through porous materi-
als (Wikipedia).

Carl von
Rokitansky (1804–

1878)

A famous Austrian pathologist,
one of the founders of the mod-
ern pathology discipline. Roki-
tansky performed and ana-
lyzed ~100,000 autopsies dur-
ing his professional life. The
full archives of his book, A
manual of pathological anat-
omy, are accessible at the web-
site https://catalog.hathitrust.
org/Record/001575734/Cite;
volume 4, page 262: “It (ather-
oma) consists of an excessive
formation and deposition of
the lining membrane of the ar-
tery derived from the mass of
blood, and at the same time
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constitutes hypertrophy of this
membrane.”

Second
thermodynamic law

The total entropy of a closed sys-
tem remains constant, leading
to a steady state. In spontane-
ous processes, the entropy in-
creases, and the process is irre-
versible (Wikipedia).

Super enhancers Loci of the genome that collec-
tively bind a pattern of tran-
scription factors in open chro-
matin, driving gene transcrip-
tion involved in cell identity
and inducing a new balance
with constitutive gene expres-
sion and a potential shift in cell
phenotype controlled at an epi-
genetic level (histone acetyla-
tion) (Wikipedia).

Teleonomy The quality of apparent purpose-
fulness and goal-directedness
of structures and functions in
living organisms brought
about by the exercise, augmen-
tation, and improvement of
reasoning. The term derives
from two words, �	́�� telos
(“end purpose”) and �Ó��
nomos (“law”) and means
“end-directed” (literally “pur-
pose-law”). Teleonomy is
thought to derive from history
and adaptation for success
(Wikipedia).

Tensegrity Also known as tensional integrity
is a structural principle based
on the use of isolated compo-
nents in compression inside a
net of tensional constraints
which delineate the system spa-
tiality (Wikipedia).
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